IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2253218.html
   My bibliography  Save this article

Pricing synthetic collateralized debt obligations based on exponential approximations to the payoff function

Author

Listed:
  • Ian Iscoe, Ken Jackson, Alex Kreinin and Xiofang Ma

Abstract

ABSTRACT Correlation-dependent derivatives, such as asset-backed securities and collateralized debt obligations (CDOs), are common tools for offsetting credit risk. Factor models in the conditional independence framework are widely used in practice to capture the correlated default events of the underlying obligors. An essential part of these models is the accurate and efficient evaluation of the expected loss of the specified tranche, conditional on a given value of a systematic factor (or values of a set of systematic factors). Unlike papers that focus on how to evaluate the loss distribution of the underlying pool, in this paper we focus on the tranche loss function itself. It is approximated by a sum of exponentials so that the conditional expectation can be evaluated in closed form without having to evaluate the pool loss distribution. As an example, we apply this approach to synthetic CDO pricing. Numerical results show that it is efficient. ;

Suggested Citation

Handle: RePEc:rsk:journ0:2253218
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/6417/jcf_ma_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2253218. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.