IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2253211.html
   My bibliography  Save this article

Numerical methods for an optimal order execution problem

Author

Listed:
  • Fabien Guilbaud, Mohamed Mnif and Huyen Pham

Abstract

ABSTRACT This paper deals with numerical solutions to an impulse control problem arising from optimal portfolio liquidation with bid-ask spread and market price impact penalizing speedy execution trades. The corresponding dynamic programming (DP) equation is a quasi-variational inequality (QVI) with solvency constraint satisfied by the value function in the sense of constrained viscosity solutions. By taking advantage of the lag variable tracking the time interval between trades, we can provide an explicit backward numerical scheme for the time discretization of the DPQVI. The convergence of this discrete-time scheme is shown by viscosity solutions arguments. An optimal quantization method is used for computing the (conditional) expectations arising in this scheme. Numerical results are presented by examining the behavior of optimal liquidation strategies, and by comparative performance analysis with respect to some benchmark execution strategies. We also test our optimal liquidation algorithm on real data, and observe various interesting patterns of order execution strategies. Finally, we provide some numerical tests of sensitivity with respect to the bid-ask spread and market impact parameters.

Suggested Citation

Handle: RePEc:rsk:journ0:2253211
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/6418/jcf_pham_web.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2253211. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.