IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160571.html
   My bibliography  Save this article

Computation of deterministic volatility surfaces

Author

Listed:
  • Nicolas Jackson, Endre Süli and Sam Howison

Abstract

ABSTRACT The 'volatility smile' is one of the well-known biases of Black-Scholes models for pricing options. In this paper, the authors introduce a robust method of reducing this bias by pricing subject to a deterministic functional volatility ó = ó (S, t). This instantaneous volatility is chosen as a spline whose weights are determined by a regularized numerical strategy that approximately minimizes the difference between Black-Scholes vanilla prices and known market vanilla prices over a range of strikes and maturities; these Black-Scholes prices are calculated by solving the relevant partial differential equation numerically using finite element methods. The instantaneous volatility generated from vanilla options can be used to price exotic options where the skew and term structure of volatility are important, and the application to barrier options is illustrated.

Suggested Citation

Handle: RePEc:rsk:journ0:2160571
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4447/v2n2a1b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160571. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.