IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160566.html
   My bibliography  Save this article

Finite sample properties of EMM, GMM, QMLE and MLE for a square-root interest rate diffusion model

Author

Listed:
  • Hao Zhou

Abstract

ABSTRACT This paper performs a Monte Carlo study on efficient method of moments (EMM), generalized method of moments (GMM), quasi-maximum likelihood estimation (QMLE) and maximum likelihood estimation (MLE) for a continuous-time square-root model under two challenging scenarios – high persistence in mean and strong conditional volatility – that are commonly found in estimating the interest rate process. MLE turns out to be the most efficient of the four methods, but its finite sample inference and convergence rate suffer severely from approximating the likelihood function, especially in the scenario of highly persistent mean. QMLE comes second in terms of estimation efficiency, but it is the most reliable in generating inferences. GMM with lag-augmented moments has, overall, the lowest estimation efficiency, possibly due to the ad hoc choice of moment conditions. EMM shows an accelerated convergence rate in the high-volatility scenario, while its over-rejection bias in the mean persistence scenario is unacceptably large. Finally, under a stylized alternative model of the US interest rates, the overidentification test of EMM obtains the ultimate power for detecting misspecification, while the GMM J-test is increasingly biased downwards in finite samples.

Suggested Citation

Handle: RePEc:rsk:journ0:2160566
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4442/v5n2a4b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160566. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.