IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160561.html
   My bibliography  Save this article

A non-Gaussian stochastic volatility model

Author

Listed:
  • Yuichi Nagahara, Genshiro Kitagawa

Abstract

ABSTRACT A non-Gaussian stochastic volatility model is proposed in this paper. The model assumes that the time series is distributed as a Pearson type-VII distribution. The scale parameter of the distribution, which corresponds to the volatility of the process, is stochastic and is described by an autoregressive model with a constant term. Since the Pearson type-VII distribution can represent a broad class of distributions, including the normal distribution and t-distribution, the proposed model can be considered as a natural extension of the ordinary stochastic volatility model. For estimating the parameters of the stochastic volatility model, we apply a non-Gaussian filter. The model can be further generalized to the case where the shape parameter of the Pearson type-VII distribution is also time-varying. The usefulness of the model is demonstrated by the analysis of stock-return data, which suggests the relevance of the model to managing financial market risk.

Suggested Citation

Handle: RePEc:rsk:journ0:2160561
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4437/v2n2a2b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160561. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.