IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160551.html
   My bibliography  Save this article

Reconstructing the unknown local volatility function

Author

Listed:
  • Thomas F. Coleman, Yuying Li and Arun Verma

Abstract

ABSTRACT Using market European option prices, a method for computing a smooth local volatility function in a 1-factor continuous diffusion model is proposed. Smoothness is introduced to facilitate accurate approximation of the local volatility function from a finite set of observation data. Assuming that the underlying indeed follows a 1-factor model, it is emphasized that accurately approximating the local volatility function prescribing the 1-factor model is crucial in hedging even simple European options and for pricing exotic options. A spline functional approach is used: the local volatility function is represented by a spline whose values at chosen knots are determined by solving a constrained nonlinear optimization problem. The optimization formulation is amenable to various option evaluation methods; a partial differential equation implementation is discussed. Using a synthetic European call option example, we illustrate the capability of the proposed method in reconstructing the unknown local volatility function. Accuracy of pricing and hedging is also illustrated. Moreover, it is demonstrated that, using different implied volatilities for options with different strikes/maturities can produce erroneous hedge factors if the underlying follows a 1-factor model. In addition, real market European call option data on the S&P500 stock index is used to compute the local volatility function; stability of the approach is demonstrated.

Suggested Citation

Handle: RePEc:rsk:journ0:2160551
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4427/v2n3a4b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160551. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.