IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160535.html
   My bibliography  Save this article

Penalty and front-fixing methods for the numerical solution of American option problems

Author

Listed:
  • Bjørn Fredrik Nielsen, Ola Skavhaug and Aslak Tveito

Abstract

ABSTRACT In this paper we introduce two methods for the efficient and accurate numerical solution of Black–Scholes models of American options: a penalty method and a front-fixing scheme. In the penalty approach the free and moving boundary is removed by adding a small, continuous penalty term to the Black–Scholes equation. The problem can then be solved on a fixed domain, thus removing the difficulties associated with a moving boundary. To gain insight into the accuracy of the method, we apply it to similar situations where the approximate solutions can be compared with analytical solutions. For explicit, semi-implicit and fully implicit numerical schemes we prove that the numerical option values generated by the penalty method mimic the basic properties of the analytical solution to the American option problem. In the front-fixing method we apply a change of variables to transform the American put problem into a nonlinear parabolic differential equation posed on a fixed domain. We propose both an implicit and an explicit scheme for solving this latter equation. Finally, the performance of the schemes is illustrated using a series of numerical experiments.

Suggested Citation

Handle: RePEc:rsk:journ0:2160535
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/9940/Penalty_and_front_fixing_methods_for_the_numerical_solution_of_American_option_problems.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160535. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.