IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160534.html
   My bibliography  Save this article

Option pricing and linear complementarity

Author

Listed:
  • Jacqueline Huang
  • Jong-Shi Pang

Abstract

ABSTRACT Many American option pricing models can be formulated as linear complementarity problems (LCPs) involving partial differential operators. While recent work with this approach has mainly addressed the model classes where the resulting LCPs are highly structured and can be solved fairly easily, this paper discusses a variety of option pricing models that are formulated as partial differential complementarity problems (PDCPs) of the convection-diffusion kind whose numerical solution depends on a better understanding of LCP methods. Specifically, the authors present second-order upwind finite-difference schemes for the PDCPs and derive fundamental properties of the resulting discretized LCPs that are essential for the convergence and stability of the finite-difference schemes and for the numerical solution of the LCPs by effective computational methods. Numerical results are reported to support the benefits of the proposed schemes. A main objective of this presentation is to elucidate the important role that the LCP has to play in the fast and effective numerical pricing of American options.

Suggested Citation

  • Jacqueline Huang & Jong-Shi Pang, . "Option pricing and linear complementarity," Journal of Computational Finance, Journal of Computational Finance.
  • Handle: RePEc:rsk:journ0:2160534
    as

    Download full text from publisher

    File URL: https://www.risk.net/journal-computational-finance/2160534/option-pricing-and-linear-complementarity
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.