IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160521.html
   My bibliography  Save this article

Sparse wavelet methods for option pricing under stochastic volatility

Author

Listed:
  • Norbert Hilber, Ana-Maria Matache, Christoph Schwab

Abstract

ABSTRACT Prices of European plain vanilla as well as barrier and compound options on one risky asset in a Black-Scholes market with stochastic volatility are expressed as solutions of degenerate parabolic partial differential equations in two spatial variables: the spot price S and the volatility process variable y. We present and analyze a pricing algorithm based on sparse wavelet space discretizations of order p ¡Ý 1 in (S, y) and on hp-discontinuous Galerkin time-stepping with geometric step size reduction towards maturity T . Wavelet preconditioners adapted to the volatility models for a Generalized Minimum Residual method (GMRES) solver allow us to price contracts at all maturities 0 < t ¡Ü T and all spot prices for a given strike K in essentially O(N) memory and work with accuracy of essentially O(N−p), a performance comparable to that of the best Fast Fourier Transform (FFT)-based pricing methods for constant volatility models (where "essentially" means up to powers of log N and |log h|, respectively).

Suggested Citation

Handle: RePEc:rsk:journ0:2160521
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4398/v8n4a1.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160521. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.