IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160506.html
   My bibliography  Save this article

A Bayesian approach for constructing implied volatility surfaces through neural networks

Author

Listed:
  • M. Avellaneda, A. Carelli, F. Stella

Abstract

ABSTRACT In this paper the authors present a new option pricing scheme which deals with a nonconstant volatility for the price of the underlying asset. The main feature of the proposed pricing scheme consists of exploiting recent developments about Bayesian learning within the artificial neural networks framework. Indeed, the Bayesian learning aproach allows the data to speak for itself, i.e., to make a few general assumptions about the process to be modeled and to exploit all the available data concerning the price of traded options for modeling the implied volatility surface. The nonparametric model of the implied volatility surface, obtained through an infinite feedforward neural network and by exploiting the Bayesian formulation of the learning problem, is used within the proposed option pricing scheme. This pricing scheme relies upon the Dupire formula, which maps the implied volatility surface to the corresponding local volatility function. Numerical experiments for the case of the USD/DM over-the-counter options are presented together with a graphical analysis of the resulting smiles which attest to the effectiveness of the overall approach to option pricing.

Suggested Citation

Handle: RePEc:rsk:journ0:2160506
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4383/v4n1a4b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160506. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.