IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160484.html
   My bibliography  Save this article

Control variates for Monte Carlo valuation of American options

Author

Listed:
  • Nicki Søndergaard Rasmussen

Abstract

ABSTRACT This paper considers two applications of control variates to the Monte Carlo valuation of American options. The main contribution of the paper lies in the particular choice of a control variate for American or Bermudan options. It is shown that for any martingale process used as a control variate, it is optimal to sample no later than the time of exercise of the American option, as opposed to the time of expiry. The first application is to the valuation. Numerical examples show that standard errors can be dramatically reduced, allowing for faster valuation using fewer paths. Second, the control variate technique is used for improving the least-squares Monte Carlo (LSM) approach for determining exercise strategies. The suggestions made allow for more efficient estimation of the continuation value, used in determining the strategy. An additional suggestion is made in order to improve the stability of the LSM approach. It is suggested to generate paths for the LSM estimation from an initial distribution rather than the single initial point. Numerical examples show that the two LSMmodifications improve the accuracy and stability of the exercise strategies, which may now be estimated using a lower number of paths.

Suggested Citation

Handle: RePEc:rsk:journ0:2160484
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4361/v9n1a4.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160484. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.