IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160483.html
   My bibliography  Save this article

Analysis of the stability of the linear boundary condition for the Black–Scholes equation

Author

Listed:
  • Heath Windcliff, Peter A. Forsyth, Ken R.Vetzal

Abstract

ABSTRACT The linear asymptotic boundary condition, which assumes that the second derivative of the value of the derivative security vanishes as the asset price becomes large, is commonly used in practice. To our knowledge there have been no rigorous studies of the stability of this method despite the fact that the discrete matrix equations obtained using this boundary condition lose diagonal dominance for large time steps. In this paper, we demonstrate that the discrete equations obtained using this boundary condition satisfy necessary conditions for stability for a finite-difference discretization. Computational experiments show that this boundary condition satisfies sufficient conditions for stability as well.

Suggested Citation

Handle: RePEc:rsk:journ0:2160483
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4360/v8n1a3.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160483. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.