Author
Abstract
ABSTRACT The richness of the option price data that is readily available to traders and others suggests the possibility of inverting this cross-sectional data to obtain a specification for a stochastic process that might be driving the observed prices. A number of such techniques have been introduced. They are attractive because they offer the prospect of specifying a stochastic process that is consistent with the observed term structure of volatility. The effectiveness of all of these approaches is, to some extent, affected by the spacing of the available option price observations in the time to maturity and strike price dimensions, respectively. The Dupire (1993) approach is particularly sensitive in this regard because it depends upon using observed option prices to estimate the derivatives of option price with respect to time to maturity and strike price. All of the approaches are sensitive to the range of moneyness that is traded. Finally, all of the approaches to stochastic process specification considered in this paper assume that the stochastic process includes only one dimension of uncertainty. This paper investigates the performance of the Dupire (1993) approach to specifying a stochastic process implied by option prices in economic environments with data sparseness and incompleteness similar to what one would observe with transactions data. It also investigates the performance of the approach when there is a deviation from the stochastic process assumption made in the model. It is shown that, when there is a deviation from the model's stochastic process assumption, the model is able to accurately determine option prices in the economic environments that are considered, but not option deltas. It is further shown that the errors in estimation of the deltas lead to significant deterioration of the approach's hedging capability in a jump-diffusion setting but not in a stochastic volatility setting. The effectiveness of the approach is not significantly undermined in the presence of data sparseness and incompleteness, but there is evidence of the deterioration in performance when data sparseness leads to errors in the spot estimates of local volatility.
Suggested Citation
Handle:
RePEc:rsk:journ0:2160452
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160452. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.