IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160447.html
   My bibliography  Save this article

On the valuation of double-barrier options: computational aspects

Author

Listed:
  • Michael Schröder

Abstract

ABSTRACT This paper discusses computational consequences of the insight of Schröder (1999) that the pricing of double-barrier options is determined by modular forms. The numerical properties of one of the valuation series of Schröder (1999), together with the corresponding estimate of its convergence rate, are studied in comparison with the Kunitomo-Ikeda valuation series. These numerical properties are determined by the convergence parameter. This new notion depends on the volatility of the underlying, the option's time to maturity, and the logarithms of the upper and lower barrier of the option. The smaller this convergence parameter, the faster is the convergence of pricing series of the Kunitomo-Ikeda type. Analogous results are shown to hold for delta hedging and are illustrated in situations "near the barrier".

Suggested Citation

Handle: RePEc:rsk:journ0:2160447
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4324/v3n4a1b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160447. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.