IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160440.html
   My bibliography  Save this article

A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options

Author

Listed:
  • Jin E. Zhang

Abstract

ABSTRACT This paper studies the pricing and hedging of continuously sampled arithmetic average rate options. We derive a new analytical approximate formula for pricing and hedging the arithmetic average rate options. The correction to the analytical approximate formula is governed by a partial differential equation (PDE) with smooth coefficients and zero initial condition, enabling it to be evaluated accurately by a numerical method. Numerical experiments show that the error of our semi-analytical method (ie, analytical approximation with the correction) is of the order of 10–7 for the grid size used in this paper, and the CPU time required for the numerical computation is only one second for a short-tenor option and 22 seconds for a long-tenor option. The accuracy can be improved further by reducing the grid size in a trade-off with CPU time. Our method is more accurate than any other method reported in the literature and it is faster than other PDE methods. With the error well controlled, our results can be used as a benchmark to justify the error computed by other approximation methods, including Monte Carlo simulation.

Suggested Citation

Handle: RePEc:rsk:journ0:2160440
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4317/v5n1a3b.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160440. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.