IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160438.html
   My bibliography  Save this article

A behavioural finance-based tick-by-tick model for price and volume

Author

Listed:
  • Garud Iyengar, Alfred Ka Chun Ma

Abstract

ABSTRACT We propose a model for jointly predicting stock price and volume at the tickby- tick level. We model investors’ preferences by a random utility model that incorporates several important behavioral biases such as the status quo bias, the disposition effect and loss aversion. Our model is a logistic regression model with incomplete information; consequently, we are unable to use the maximum likelihood estimation method and have to resort to a Markov chain Monte Carlo (MCMC) method to estimate the model parameters. Moreover, the constraint requiring that the volume predicted by the MCMC model exactly match the observed volume introduces serial correlation in the stock price. Thus, the standard MCMC methods for calibrating parameters do not work. We develop new modifications of the Metropolis-within-Gibbs method to estimate the parameters in our model. Our primary goal in developing this model is to predict the market impact function and volume-weighted average price of individual stocks.

Suggested Citation

Handle: RePEc:rsk:journ0:2160438
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/digital_assets/4315/v14n1a3.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160438. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.