IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160436.html
   My bibliography  Save this article

Proxy simulation schemes for generic robust Monte Carlo sensitivities, process-oriented importance sampling and high-accuracy drift approximation

Author

Listed:
  • Christian P. Fries, Jörg Kampen

Abstract

ABSTRACT We consider a generic framework for generating likelihood ratio weighted Monte Carlo simulation paths, where we use one simulation scheme Ko (proxy scheme) to generate realizations and then reinterpret them as realizations of another scheme K* (target scheme) by adjusting the measure (via likelihood ratio) to match the distribution of K* such thatEQ(f (K*) | Ft ) = EQ(f (Ko) · w | Ft ) . This is done numerically in every time step, on every path. This makes the approach independent of the product (the function f in the above equation) and even of the model; it only depends on the numerical scheme. The approach is essentially a numerical version of the likelihood ratio method (Broadie and Glasserman 1996) and Malliavin’s calculus (Fournié et al 1999; Malliavin 1997) reconsidered on the level of the discrete numerical simulation scheme. As the numerical scheme represents a time-discrete stochastic process sampled on a discrete probability space, the essence of the method may be motivated without a deeper mathematical understanding of the time continuous theory (eg, Malliavin’s calculus). The framework is completely generic and may be used for: high-accuracy drift approximations; process-oriented importance sampling; and the robust calculation of partial derivatives of expectations with respect to model parameters (ie, sensitivities, also known as Greeks) by applying finite differences by re-evaluating the expectation with a model with shifted parameters. We present numerical results using a Monte Carlo simulation of the LIBOR Market Model for benchmarking.

Suggested Citation

Handle: RePEc:rsk:journ0:2160436
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/10014/Proxy_simulation_schemes.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160436. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.