IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160405.html
   My bibliography  Save this article

Robust numerical valuation of European and American options under the CGMY process

Author

Listed:
  • Iris R. Wang
  • Justin W. L. Wan
  • Peter A. Forsyth

Abstract

ABSTRACT We develop an implicit discretization method for pricing European and American options when the underlying asset is driven by an infinite activity Lévy process. For processes of finite variation, quadratic convergence is obtained as the mesh and timestep are refined. For infinite variation processes, better than first-order accuracy is achieved. The jump component in the neighborhood of log jump size zero is specially treated by using a Taylor expansion approximation and the drift term is dealt with using a semi-Lagrangian scheme. The resulting partial integro-differential equation is then solved using a preconditioned BiCGSTAB method coupled with a fast Fourier transform. Proofs of fully implicit timestepping stability and monotonicity are provided. The convergence properties of the BiCGSTAB scheme are discussed and compared with a fixed point iteration. Numerical tests showing the convergence and performance of this method for European and American options under processes of finite and infinite variation are presented.

Suggested Citation

  • Iris R. Wang & Justin W. L. Wan & Peter A. Forsyth, . "Robust numerical valuation of European and American options under the CGMY process," Journal of Computational Finance, Journal of Computational Finance.
  • Handle: RePEc:rsk:journ0:2160405
    as

    Download full text from publisher

    File URL: https://www.risk.net/journal-of-computational-finance/2160405/robust-numerical-valuation-of-european-and-american-options-under-the-cgmy-process
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.