IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160403.html
   My bibliography  Save this article

Higher-order saddlepoint approximations in the Vasicek portfolio credit loss model

Author

Listed:
  • Xinzheng Huang
  • Cornelis W. Oosterlee
  • Hans van der Weide

Abstract

ABSTRACT This paper utilizes the saddlepoint approximation as an efficient tool to estimate the portfolio credit loss distribution in the Vasicek model. Value-atrisk (VaR), the risk measure chosen in the Basel II Accord for the evaluation of capital requirement, can then be found by inverting the loss distribution. The VaR contribution (VaRC), expected shortfall (ES) and ES contribution (ESC) can all be calculated accurately. Saddlepoint approximation is well known to provide good approximations to very small tail probabilities, which makes it a very suitable technique in the context of portfolio credit loss. The portfolio credit model we employ is the Vasicek one-factor model, which has an analytical solution if the portfolio is well diversified. The Vasicek asymptotic formula fails, however, when the portfolio is dominated by a few loans much larger than the rest. We show that saddlepoint approximation is able to handle such exposure concentration. We also point out that the saddlepoint approximation technique can be readily applied to more general Bernoulli mixture models (possibly multi-factor). It can further handle portfolios with random loss given default (LGD). Download PDF

Suggested Citation

  • Xinzheng Huang & Cornelis W. Oosterlee & Hans van der Weide, . "Higher-order saddlepoint approximations in the Vasicek portfolio credit loss model," Journal of Computational Finance, Journal of Computational Finance.
  • Handle: RePEc:rsk:journ0:2160403
    as

    Download full text from publisher

    File URL: https://www.risk.net/journal-of-computational-finance/2160403/higher-order-saddlepoint-approximations-in-the-vasicek-portfolio-credit-loss-model
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.