IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160396.html
   My bibliography  Save this article

The relative efficiency of numerical methods for pricing American options under Lévy processes

Author

Listed:
  • Sergei LevendorskiˇÃµ, Oleg Kudryavtsev, Vadim Zherder

Abstract

ABSTRACT We analyze properties of prices of American options under Lévy processes and the related difficulties for design of accurate and efficient numerical methods for pricing of American options. The case of Lévy processes with an insignificant diffusion component and jump part of infinite activity but finite variation (the case most relevant in practice according to the empirical study in Carr et al (2002)) appears to be the most difficult. Several numerical methods suggested for this case are discussed and compared. It is shown that approximations by diffusions with embedded jumps may be too inaccurate unless the time to expiry is large. However, the fitting by a diffusion with embedded exponentially distributed jumps and a new finite difference scheme suggested in the paper can be used as good complements, which ensure accurate and fast calculation of the option prices both close to expiry and far from it.We demonstrate that if the time to expiry is two months or more, and the relative error 2–3% is admissible, then the fitting by a diffusion with embedded exponentially distributed jumps and the calculation of prices using the semi-explicit pricing procedure in Levendorskiˇõ (2004a) is the best choice.

Suggested Citation

Handle: RePEc:rsk:journ0:2160396
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4274/v9n2a3.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160396. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.