IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160393.html
   My bibliography  Save this article

Fast Greeks by algorithmic differentiation

Author

Listed:
  • Luca Capriotti

Abstract

ABSTRACT We show how algorithmic differentiation can be used to efficiently implement the pathwise derivative method for the calculation of option sensitivities using Monte Carlo simulations. The main practical difficulty of the pathwise derivative method is that it requires the differentiation of the payout function. For the type of structured options for which Monte Carlo simulations are usually employed, these derivatives are typically cumbersome to calculate analytically, and too time consuming to evaluate with standard finite-difference approaches. In this paper we address this problem and show how algorithmic differentiation can be employed to calculate these derivatives very efficiently and with machine-precision accuracy. We illustrate the basic workings of this computational technique by means of simple examples, and we demonstrate with several numerical tests how the pathwise derivative method combined with algorithmic differentiation - especially in the adjoint mode - can provide speed-ups of several orders of magnitude with respect to standard methods.

Suggested Citation

Handle: RePEc:rsk:journ0:2160393
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4271/v14n3a1.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160393. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.