IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160381.html
   My bibliography  Save this article

Generalized control variate methods for pricing Asian options

Author

Listed:
  • Chuan-Hsiang Han, Yongzeng Lai

Abstract

ABSTRACT The conventional control variate method proposed by Kemna and Vorst for evaluating Asian options using the Black-Scholes model utilizes a constant control parameter.We generalize this method, applying it to a stochastic control process through the martingale representation of the conventional control. This generalized control variate has zero variance in the optimal case, whereas the conventional control can only reduce its variance by a finite factor. By means of option price approximations, the generalized control is reduced to a linear martingale control. It is straightforward to extend this martingale control to a non-linear situation such as the American Asian option problem. From the variance analysis of martingales, the performance of control variate methods depends on the distance between the approximate martingale and the optimal martingale. This measure becomes helpful for the design of control variate methods for complex problems such as Asian options using stochastic volatility models.We demonstrate multiple choices of controls and test them with Monte Carlo and quasi-Monte Carlo simulations. Quasi-Monte Carlo methods perform significantly better after adding a control when using the two-step control variate method, while the variance reduction ratios increase to 320 times for randomized quasi-Monte Carlo methods, compared with 60 times for Monte Carlo simulations with a control.

Suggested Citation

Handle: RePEc:rsk:journ0:2160381
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/10346/Generalized_control_variate_methods_for_pricing_Asian_options.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160381. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.