IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160356.html
   My bibliography  Save this article

Latin hypercube sampling with dependence and applications in finance

Author

Listed:
  • Natalie Packham, Wolfgang M. Schmidt

Abstract

ABSTRACT In Monte Carlo simulation, Latin hypercube sampling (LHS) (McKay et al (1979)) is a well-known variance reduction technique for vectors of independent random variables. The method presented here, Latin hypercube sampling with dependence (LHSD), extends LHS to vectors of dependent random variables. The resulting estimator is shown to be consistent and asymptotically unbiased. For the bivariate case and under some conditions on the joint distribution, a central limit theorem together with a closed formula for the limit variance are derived. It is shown that for a class of estimators satisfying some monotonicity condition, the LHSD limit variance is never greater than the corresponding Monte Carlo limit variance. In some valuation examples of financial payoffs, when compared to standard Monte Carlo simulation, a variance reduction of factors up to 200 is achieved. We illustrate that LHSD is suited for problems with rare events and for high-dimensional problems, and that it may be combined with quasi-Monte Carlo methods.

Suggested Citation

Handle: RePEc:rsk:journ0:2160356
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/10354/Latin_hypercube_sampling_with_dependence_and_applications_in_finance.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160356. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.