IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160349.html
   My bibliography  Save this article

Convergence analysis of Crank–Nicolson and Rannacher time-marching

Author

Listed:
  • Michael B. Giles, Rebecca Carter

Abstract

ABSTRACT This paper presents a convergence analysis of Crank–Nicolson and Rannacher time-marching methods which are often used in finite difference discretizations of the Black–Scholes equations. Particular attention is paid to the important role of Rannacher’s startup procedure, in which one or more initial timesteps use backward Euler timestepping, to achieve second-order convergence for approximations of the first and second derivatives. Numerical results confirm the sharpness of the error analysis which is based on asymptotic analysis of the behavior of the Fourier transform. The relevance to Black–Scholes applications is discussed in detail, with numerical results supporting recommendations on how to maximize the accuracy for a given computational cost.

Suggested Citation

Handle: RePEc:rsk:journ0:2160349
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/4228/v9n4a4.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160349. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.