IDEAS home Printed from https://ideas.repec.org/a/rsk/journ0/2160348.html
   My bibliography  Save this article

PDE methods for maximum drawdown

Author

Listed:
  • Libor Pospisil, Jan Vecer

Abstract

ABSTRACT Maximum drawdown is a risk measure that plays an important role in portfolio management. In this paper, we address the question of computing the expected value of the maximum drawdown using a partial differential equation approach. First, we derive a two-dimensional convection diffusion pricing equation for the maximum drawdown in the Black–Scholes framework. Due to the properties of the maximum drawdown, this equation has a non-standard boundary condition. We apply an alternating direction implicit method to solve the equation numerically. We also discuss stability and convergence of the numerical method.

Suggested Citation

Handle: RePEc:rsk:journ0:2160348
as

Download full text from publisher

File URL: https://www.risk.net/system/files/import/protected/digital_assets/9938/jcf12%282%29vecer%28web%29.pdf
Download Restriction: no
---><---

More about this item

Statistics

Access and download statistics

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsk:journ0:2160348. See general information about how to correct material in RePEc.

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

We have no bibliographic references for this item. You can help adding them by using this form .

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Paine (email available below). General contact details of provider: https://www.risk.net/journal-of-computational-finance .

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.