IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2018i4p134-147.html
   My bibliography  Save this article

Anchoring Effect on Macroeconomic Forecasts : A Heterogeneity Approach

Author

Listed:
  • Tzu-Pu CHANG, Ray Yeutien CHOU

    (Department of Finance, National Yunlin University of Science and Technology, 123, University Rd. Sec. 3, Douliou, Yunlin 64002, Taiwan)

  • Ray Yeutien CHOU

    (Institute of Economics, Academia Sinica, 128 Academia Rd., Sec. 2, Nankang, Taipei 11529, Taiwan)

Abstract

With respect to the rational expectation hypothesis, some previous studies adopted a behavioral perspective to explain why forecast biases occur. One widely-discussed behavioral bias in forecasting is the anchoring and adjustment heuristics. This paper proposes a two-anchor heterogeneity model to simultaneously estimate the anchoring biases in individual and consensus forecasts. The results show that the previous individual forecast and consensus forecast anchor the forecasts of the U.S. macroeconomic series. Generally, forecasters slowly adjust their prior belief and behave stubbornly. Moreover, the individual forecaster also presents substantial and heterogeneous anchoring bias. A robustness analysis using Eurozone data is consistent with the findings mentioned above.

Suggested Citation

  • Tzu-Pu CHANG, Ray Yeutien CHOU & Ray Yeutien CHOU, 2018. "Anchoring Effect on Macroeconomic Forecasts : A Heterogeneity Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 134-147, December.
  • Handle: RePEc:rjr:romjef:v::y:2018:i:4:p:134-147
    as

    Download full text from publisher

    File URL: http://www.ipe.ro/rjef/rjef4_18/rjef4_2018p134-147.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    2. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    3. Hibiki Ichiue & Tomonori Yuyama, 2009. "Using Survey Data to Correct the Bias in Policy Expectations Extracted from Fed Funds Futures," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(8), pages 1631-1647, December.
    4. Keane, Michael P & Runkle, David E, 1990. "Testing the Rationality of Price Forecasts: New Evidence from Panel Data," American Economic Review, American Economic Association, vol. 80(4), pages 714-735, September.
    5. Lamont, Owen A., 2002. "Macroeconomic forecasts and microeconomic forecasters," Journal of Economic Behavior & Organization, Elsevier, vol. 48(3), pages 265-280, July.
    6. Nakazono, Yoshiyuki, 2013. "Strategic behavior of Federal Open Market Committee board members: Evidence from members’ forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 93(C), pages 62-70.
    7. Ippei Fujiwara & Hibiki Ichiue & Yoshiyuki Nakazono & Yosuke Shigemi, 2012. "Financial markets forecasts revisited: are they rational, herding or bold?," Globalization Institute Working Papers 106, Federal Reserve Bank of Dallas.
    8. Welch, Ivo, 2000. "Herding among security analysts," Journal of Financial Economics, Elsevier, vol. 58(3), pages 369-396, December.
    9. Harrison Hong & Jeffrey D. Kubik & Amit Solomon, 2000. "Security Analysts' Career Concerns and Herding of Earnings Forecasts," RAND Journal of Economics, The RAND Corporation, vol. 31(1), pages 121-144, Spring.
    10. Fujiwara, Ippei & Ichiue, Hibiki & Nakazono, Yoshiyuki & Shigemi, Yosuke, 2013. "Financial markets forecasts revisited: Are they rational, stubborn or jumpy?," Economics Letters, Elsevier, vol. 118(3), pages 526-530.
    11. Yoshiyuki Nakazono, 2012. "Heterogeneity and anchoring in financial markets," Applied Financial Economics, Taylor & Francis Journals, vol. 22(21), pages 1821-1826, November.
    12. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    13. Campbell, Sean D. & Sharpe, Steven A., 2009. "Anchoring Bias in Consensus Forecasts and Its Effect on Market Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 369-390, April.
    14. Davies, Anthony & Lahiri, Kajal, 1995. "A new framework for analyzing survey forecasts using three-dimensional panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 205-227, July.
    15. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    16. Lucian Liviu ALBU & Carlos MatéJIMÉNEZ & Mihaela SIMIONESCU, 2015. "The Assessment of Some Macroeconomic Forecasts for Spain using Aggregated Accuracy Indicators," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 30-47, June.
    17. Tilman Ehrbeck & Robert Waldmann, 1996. "Why Are Professional Forecasters Biased? Agency versus Behavioral Explanations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(1), pages 21-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizer, Kilian & Meub, Lukas & Proeger, Till & Spiwoks, Markus, 2014. "Strategic coordination in forecasting: An experimental study," University of Göttingen Working Papers in Economics 195, University of Goettingen, Department of Economics.
    2. Fujiwara, Ippei & Ichiue, Hibiki & Nakazono, Yoshiyuki & Shigemi, Yosuke, 2013. "Financial markets forecasts revisited: Are they rational, stubborn or jumpy?," Economics Letters, Elsevier, vol. 118(3), pages 526-530.
    3. Nakazono, Yoshiyuki, 2013. "Strategic behavior of Federal Open Market Committee board members: Evidence from members’ forecasts," Journal of Economic Behavior & Organization, Elsevier, vol. 93(C), pages 62-70.
    4. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    5. Meub, Lukas & Proeger, Till & Bizer, Kilian, 2013. "Anchoring: A valid explanation for biased forecasts when rational predictions are easily accessible and well incentivized?," University of Göttingen Working Papers in Economics 166, University of Goettingen, Department of Economics.
    6. Papastamos, Dimitrios & Matysiak, George & Stevenson, Simon, 2015. "Assessing the accuracy and dispersion of real estate investment forecasts," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 141-152.
    7. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    8. Döpke Jörg & Fritsche Ulrich & Waldhof Gabi, 2019. "Theories, Techniques and the Formation of German Business Cycle Forecasts : Evidence from a survey of professional forecasters," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 239(2), pages 203-241, April.
    9. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "Professional advice," Journal of Economic Theory, Elsevier, vol. 126(1), pages 120-142, January.
    10. Marco Ottaviani & Peter Norman Sorensen, 2002. "Professional Advice: The Theory of Reputational Cheap Talk," Discussion Papers 02-05, University of Copenhagen. Department of Economics.
    11. Döpke, Jörg & Fritsche, Ulrich & Waldhof, Gaby, 2017. "Theories, techniques and the formation of German business cycle forecasts. Evidence from a survey among professional forecasters," Working Papers 2, German Research Foundation's Priority Programme 1859 "Experience and Expectation. Historical Foundations of Economic Behaviour", Humboldt University Berlin.
    12. Fildes, Robert & Stekler, Herman, 2002. "The state of macroeconomic forecasting," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 435-468, December.
    13. Meub, Lukas & Proeger, Till, 2016. "Can anchoring explain biased forecasts? Experimental evidence," Journal of Behavioral and Experimental Finance, Elsevier, vol. 12(C), pages 1-13.
    14. Goldstein, Nathan & Zilberfarb, Ben-Zion, 2021. "Do forecasters really care about consensus?," Economic Modelling, Elsevier, vol. 100(C).
    15. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    16. Annarita Colasante & Simone Alfarano & Eva Camacho-Cuena & Mauro Gallegati, 2020. "Long-run expectations in a learning-to-forecast experiment: a simulation approach," Journal of Evolutionary Economics, Springer, vol. 30(1), pages 75-116, January.
    17. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    18. Broer, Tobias & Kohlhas, Alexandre, 2018. "Forecaster (Mis-)Behavior," CEPR Discussion Papers 12898, C.E.P.R. Discussion Papers.
    19. Zitzewitz, Eric, 2001. "Measuring Herding and Exaggeration by Equity Analysts and Other Opinion Sellers," Research Papers 1802, Stanford University, Graduate School of Business.
    20. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.

    More about this item

    Keywords

    anchoring effect; macroeconomic forecast; rational expectation; heterogeneity model; consensus forecast;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2018:i:4:p:134-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.