IDEAS home Printed from https://ideas.repec.org/a/ris/iosalg/0066.html
   My bibliography  Save this article

A new variable selection method applied to credit scoring

Author

Listed:
  • Boughaci, Dalila

    (LRIA/Computer Science Department, University of Sciences and Technology Houari Boumediene)

  • Alkhawaldeh, Abdullah A.K.

    (Department of Accounting, Faculty of Economics and Administrative Sciences, The Hashemite University)

Abstract

Credit scoring (CS) is an important process in both banking and finance. Lenders or creditors have to use CS to predict the probability that a borrower will default or become delinquent. CS is usually based on variables related to the applicant such as: his age, his historical payments, his behavior, etc. This paper first proposes a new method for variable selection. The proposed method (VS-VNS) is based on the variable neighborhood search meta-heuristic. VS-VNS allows us to select a set of significant variables for the data classification task. The VS-VNS is combined then with a Bayesian network (BN) to build models for CS and select counterparties. Further, six search methods are studied for BN on different sets of variables. The different techniques and combinations are evaluated on some well-known financial datasets. The numerical results are promising and show the benefits of the new proposed approach (VS-VNS) for data classification and credit scoring.

Suggested Citation

  • Boughaci, Dalila & Alkhawaldeh, Abdullah A.K., 2018. "A new variable selection method applied to credit scoring," Algorithmic Finance, IOS Press, vol. 7(1-2), pages 43-52.
  • Handle: RePEc:ris:iosalg:0066
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Keywords

    Credit scoring; variable selection; variable neighborhood search; search technique; Bayesian network; Hill climbing; tabu search; simulated annealing; TAN; classification;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:iosalg:0066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saskia van Wijngaarden (email available below). General contact details of provider: http://www.iospress.nl/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.