IDEAS home Printed from https://ideas.repec.org/a/ris/iosalg/0038.html
   My bibliography  Save this article

Likelihood Ratio Method and Algorithmic Differentiation: Fast Second Order Greeks

Author

Listed:
  • Capriotti, Luca

    (Quantitative Strategies, Investment Banking Division, Credit Suisse Group)

Abstract

We show how Adjoint Algorithmic Differentiation can be combined with the so-called Pathwise Derivative and Likelihood Ratio Method to construct efficient Monte Carlo estimators of second order price sensitivities of derivative portfolios. We demonstrate with a numerical example how the proposed technique can be straightforwardly implemented to greatly reduce the computation time of second order risk.

Suggested Citation

  • Capriotti, Luca, 2015. "Likelihood Ratio Method and Algorithmic Differentiation: Fast Second Order Greeks," Algorithmic Finance, IOS Press, vol. 4(1-2), pages 81-87.
  • Handle: RePEc:ris:iosalg:0038
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Daluiso, 2023. "Fast and Stable Credit Gamma of CVA," Papers 2311.11672, arXiv.org.
    2. Roberto Daluiso & Giorgio Facchinetti, 2018. "Algorithmic Differentiation For Discontinuous Payoffs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-41, June.

    More about this item

    Keywords

    Adjoint Algorithmic Differentiation; Monte Carlo; derivatives securities; risk management;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:iosalg:0038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Saskia van Wijngaarden (email available below). General contact details of provider: http://www.iospress.nl/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.