IDEAS home Printed from https://ideas.repec.org/a/ris/actuec/v73y1997i1p81-98.html
   My bibliography  Save this article

Modèle bayésien généralisé pour l’identification des sites routiers dangereux

Author

Listed:
  • Bolduc, Denis

    (GREEN, Département d’économique, Université Laval)

  • Bonin, Sylvie

    (Département d’aménagement, Université Laval)

Abstract

In this paper, we describe a general full information Bayesian methodology to analyze road accident sites. The technique allows for the presence of deterministic and random heterogeneity together with spatial autocorrelation among neighboring sites. The suggested framework contains as subcases the Bayesian approaches currently used to study accidents frequencies and those intended for the analysis of accidents proportions of accidents with a given characteristic. To demonstrate the feasibility and the usefulness of the suggested approach, we apply it on accidents data taken from the Quebec city database. Dans le présent article, nous décrivons une méthodologie générale à information complète pour analyser la dangerosité des sites routiers. La technique proposée, de type bayésienne, permet de traiter simultanément les problèmes d’hétérogénéité déterministe et aléatoire ainsi que celui de la corrélation spatiale attribuable à la proximité ou l’environnement similaire caractérisant les sites à l’étude. Notre cadre méthodologique englobe des approches bayésiennes de pratique courante qui mettent l’accent sur l’analyse des fréquences d’accidents et d’autres du même type qui étudient les proportions d’accidents impliquant une caractéristique donnée. Les propriétés et l’intérêt de la nouvelle méthode sont démontrés à l’aide d’un exemple concret basé sur des données de la région de Québec.

Suggested Citation

  • Bolduc, Denis & Bonin, Sylvie, 1997. "Modèle bayésien généralisé pour l’identification des sites routiers dangereux," L'Actualité Economique, Société Canadienne de Science Economique, vol. 73(1), pages 81-98, mars-juin.
  • Handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:81-98
    as

    Download full text from publisher

    File URL: http://id.erudit.org/iderudit/602223ar
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. BOLDUC, Denis & BONIN, Sylvie, 1995. "Bayesian Analysis of Road Accidents: Accounting for Deterministic Heterogeneity," Cahiers de recherche 9518, Université Laval - Département d'économique.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:actuec:v:73:y:1997:i:1:p:81-98. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Dostie (email available below). General contact details of provider: https://edirc.repec.org/data/scseeea.html .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.