IDEAS home Printed from https://ideas.repec.org/a/rge/journl/v9y2021i1p1-17.html
   My bibliography  Save this article

Segmentacion de mercado basada en las preferencias: aplicacion de las Escalas de Maximas Diferencias y las Clases Latentes como estrategia para predecir el comportamiento del mercado. Una aplicacion al Marketing de bebidas no alcoholicas(Preference-based market segmentation: application of Maximum Difference Scales and Latent Classes as a strategy for predicting market behavior. An application to soft drink marketing)

Author

Listed:
  • Hernan Talledo

    (Universidad Peruana de Ciencias Aplicadas)

  • Joaquin Sanchez Herrera

    (Universidad Complutense de Madrid)

Abstract

El estudio de las preferencias del consumidor y su proceso de decision ha sido una de las areas de estudio mas activas en la ultima decada. La elevada tasa de fracasos en los productos de consumo frecuente, asi como el aumento de la heterogeneidad de la demanda, han hecho que tanto academicos como profesionales busquen modelos y tecnicas que sean capaces de entender la complejidad de los mercados, y desvelar las intenciones de los consumidores. En este trabajo se propone la combinacion de las escalas de maximas diferencias o "best-worst scaling" con el analisis de Clases Latentes. La primera de ellas permite extraer el valor o "utilidad" que tiene una determinada alternativa de compra para el consumidor, mientras que la segunda usa esa informacion para detectar grupos de consumidores de forma eficiente. Para ilustrar el procedimiento se ha aplicado a una muestra de 575 individuos en el mercado de las bebidas no alcoholicas, en el que se revela la utilidad y eficiencia de este tipo de modelos de analisis de segmentacion.

Suggested Citation

  • Hernan Talledo & Joaquin Sanchez Herrera, 2021. "Segmentacion de mercado basada en las preferencias: aplicacion de las Escalas de Maximas Diferencias y las Clases Latentes como estrategia para predecir el comportamiento del mercado. Una aplicacion a," Revista Internacional de Gestión del Conocimiento y la Tecnología (GECONTEC), Revista Internacional de Gestión del Conocimiento y la Tecnología (GECONTEC), vol. 9(1), pages 1-17, May.
  • Handle: RePEc:rge:journl:v:9:y:2021:i:1:p:1-17
    DOI: 10.5281/zenodo.7083794
    as

    Download full text from publisher

    File URL: https://doi.org/10.5281/zenodo.7083794
    File Function: full text
    Download Restriction: no

    File URL: https://libkey.io/10.5281/zenodo.7083794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Best Worst Scaling; Segmentacion; Clases Latentes; Analisis Cluster; Modelos de eleccion; Escalas de maximas diferencias;
    All these keywords.

    JEL classification:

    • M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration
    • M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D
    • D8 - Microeconomics - - Information, Knowledge, and Uncertainty
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rge:journl:v:9:y:2021:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Luis Camilo Ortigueira Sánchez (email available below). General contact details of provider: https://www.gecontec.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.