IDEAS home Printed from https://ideas.repec.org/a/rfa/aefjnl/v2y2015i2p29-51.html
   My bibliography  Save this article

Modeling Banks¡¯ Probability of Default

Author

Listed:
  • Xiaoming Tong

Abstract

The unprecedented financial crisis of 2008-2009 has called attention to limitations of existing methods for estimating the default risk of financial intuitions. Over the past decade, we have had considerable success at predicting default and credit relative value using Merton-type structural models and Hybrid Probability of Default models. However, generating accurate model-based estimates of default probabilities (PDs) for financial firms has proven difficult. To address this need, I built and tested a time-adaptive statistical model that predicts the default probabilities of banks. The model is a logistic regression whose input variables are selected based on their past effectiveness at predicting bank failures and whose inclusion in the model and weights are to be updated quarterly. Model performance at discriminating between defaults and non-defaults was evaluated for horizons of one to five years using a sequence of annual walk-forward out-of-sample tests from 1992 to 2012. I tested the ability of the model to predict absolute default rates out to five years and, except for underestimating the high bank default rates during the credit crisis, the models perform well at estimating the annual bank default rates. Because most default models provide little benefit over agency ratings for low-rated credits, I examined the performance of the model to Kroll agency ratings only for those banks rated above single-B-minus or above single-C-minus. Although default predictions from agency ratings fall off rapidly for banks rated at or above single-B and single-C, the time-adaptive statistical model predictions deteriorate far less. Accuracy at predicting bank defaults using agency ratings decreases to near chance at a prediction horizon of five years, but the time-adaptive statistical model continues to perform well above chance at all horizons. I also present a detailed analysis of the contributions of financial variables to model outputs by year (2000-2012) and tenor (1-5 years) and evaluate the consistency of variable contributions over time. The model performs favorably at predicting defaults, even relative to the best non-financial corporate default models, with a 97% accuracy ratio (AR) at one year prior to default, and decreasing, but still above-chance predictive power out to five years. I find that banks¡¯ quality of assets and return on equity are most important for predicting near term defaults, giving way at longer horizons to operating income and the yield on earning assets.

Suggested Citation

  • Xiaoming Tong, 2015. "Modeling Banks¡¯ Probability of Default," Applied Economics and Finance, Redfame publishing, vol. 2(2), pages 29-51, May.
  • Handle: RePEc:rfa:aefjnl:v:2:y:2015:i:2:p:29-51
    as

    Download full text from publisher

    File URL: http://redfame.com/journal/index.php/aef/article/view/739/679
    Download Restriction: no

    File URL: http://redfame.com/journal/index.php/aef/article/view/739
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    bank default; credit risk; default risk;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rfa:aefjnl:v:2:y:2015:i:2:p:29-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Redfame publishing (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.