IDEAS home Printed from https://ideas.repec.org/a/rau/journl/v9y2015i1p37-49.html
   My bibliography  Save this article

Real-Time Gaze Tracking With A Single Camera

Author

Listed:
  • Constantin Carapencea

    (University POLITEHNICA of Bucharest)

  • Irina Mocanu

    (University POLITEHNICA of Bucharest)

Abstract

This paper presents a non-intrusive method for gaze tracking, using a single monocular low-resolution camera. By tracking the face orientation and the center of the pupil, the system estimates the gaze direction which can be projected onto a screen to obtain the user's point of gaze. As the design is based on open source portable building blocks, the system can be used on a variety of devices. The implemented gaze tracker achieves real-time performance. Although the measured accuracy does not compete with other expensive, more complex solutions, it is still possible to integrate it into other applications which require basic gaze tracking capabilities.

Suggested Citation

  • Constantin Carapencea & Irina Mocanu, 2015. "Real-Time Gaze Tracking With A Single Camera," Romanian Economic Business Review, Romanian-American University, vol. 9(1), pages 37-49, May.
  • Handle: RePEc:rau:journl:v:9:y:2015:i:1:p:37-49
    as

    Download full text from publisher

    File URL: http://www.rebe.rau.ro/RePEc/rau/jisomg/SU15/JISOM-SU15-A4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiri Najemnik & Wilson S. Geisler, 2005. "Optimal eye movement strategies in visual search," Nature, Nature, vol. 434(7031), pages 387-391, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederick Callaway & Antonio Rangel & Thomas L Griffiths, 2021. "Fixation patterns in simple choice reflect optimal information sampling," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-29, March.
    2. Hang Zhang & Camille Morvan & Louis-Alexandre Etezad-Heydari & Laurence T Maloney, 2012. "Very Slow Search and Reach: Failure to Maximize Expected Gain in an Eye-Hand Coordination Task," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    3. Camille Morvan & Laurence T Maloney, 2012. "Human Visual Search Does Not Maximize the Post-Saccadic Probability of Identifying Targets," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-11, February.
    4. Emre Akbas & Miguel P Eckstein, 2017. "Object detection through search with a foveated visual system," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-28, October.
    5. Joseph Snider & Dongpyo Lee & Howard Poizner & Sergei Gepshtein, 2015. "Prospective Optimization with Limited Resources," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-28, September.
    6. Michel Wedel & Rik Pieters & Ralf Lans, 2023. "Modeling Eye Movements During Decision Making: A Review," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 697-729, June.
    7. Sheng Zhang & Miguel P Eckstein, 2010. "Evolution and Optimality of Similar Neural Mechanisms for Perception and Action during Search," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    8. Sang-Hoon Yeo & David W Franklin & Daniel M Wolpert, 2016. "When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-22, December.
    9. Niklas Wilming & Simon Harst & Nico Schmidt & Peter König, 2013. "Saccadic Momentum and Facilitation of Return Saccades Contribute to an Optimal Foraging Strategy," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rau:journl:v:9:y:2015:i:1:p:37-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alex Tabusca (email available below). General contact details of provider: https://edirc.repec.org/data/firauro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.