IDEAS home Printed from https://ideas.repec.org/a/qua/journl/v18y2021i1p1-20.html
   My bibliography  Save this article

Modelo estadistico para defunciones y casos positivos de COVID-19 en Mexico

Author

Listed:
  • Gustavo Ramirez-Valverde

    (Colegio de Postgraduados, campus Montecillo)

  • Benito Ramirez-Valverde

    (Colegio de Postgraduados campus Puebla)

Abstract

Utilizar un modelo estadistico de las defunciones y casos positivos de COVID-19 en Mexico, para estudiar el comportamiento de la pandemia y contribuir a definir alternativas y politicas publicas que puedan mitigar el daño de la enfermedad en la sociedad. Se empleo la informacion oficial de la Secretaria de Salud respecto del numero de casos positivos de COVID-19 y del numero de defunciones causadas por esta enfermedad en Mexico. Las limitaciones del estudio son el reducido numero de datos y la posibilidad de fallas en la contabilidad de contagios y defunciones. Estima un modelo basado en los datos de la pandemia en Mexico y su aplicacion. El modelo seleccionado fue el de Gompertz con cuatro parametros. El modelo muestra un adecuado ajuste y su utilidad en la aplicacion en niveles regionales y futuros rebrotes de la enfermedad, para tomar medidas y elaborar politicas publicas que permitan aminorar el daño causado por la pandemia.

Suggested Citation

  • Gustavo Ramirez-Valverde & Benito Ramirez-Valverde, 2021. "Modelo estadistico para defunciones y casos positivos de COVID-19 en Mexico," EconoQuantum, Revista de Economia y Finanzas, Universidad de Guadalajara, Centro Universitario de Ciencias Economico Administrativas, Departamento de Metodos Cuantitativos y Maestria en Economia., vol. 18(1), pages 1-20, Enero-Jun.
  • Handle: RePEc:qua:journl:v:18:y:2021:i:1:p:1-20
    as

    Download full text from publisher

    File URL: https://econoquantum.cucea.udg.mx/index.php/EQ/article/view/7223/6733
    Download Restriction: no

    File URL: https://econoquantum.cucea.udg.mx/index.php/EQ/issue/view/699
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Modelo de Gompertz; salud publica; minimos cuadrados no lineales.;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being
    • I38 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Government Programs; Provision and Effects of Welfare Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qua:journl:v:18:y:2021:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Ivett Portugal Padilla (email available below). General contact details of provider: https://edirc.repec.org/data/dmudgmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.