Author
Abstract
[fre] Equité et jeu de Saint-Petersbourg. . S'il est joué un grand nombre de fois, le jeu de Saint-Pétersbourg n'est plus qu'un cas particulier d'une loi faible des grands nombres généralisée. Le gain moyen de n parties du jeu tend en probabilité vers 1/2 Logn (en base 2), un résultat connu depuis la fin du XIXè siècle au moins, mais dont la démonstration est relativement récente. L'usage de simulations montre que la solution équitable du jeu est réaliste, car les ordres de grandeur de n ne sont pas gigantesques. Le jeu est donc jouable, même si les joueurs sont averses au risque.. L'article montre que les distributions des tailles de certains sinistres, recensés par les compagnies d'assurances, sont du type « Saint-Pétersbourg ». Le jeu est donc un modèle réaliste. Les conséquences économiques du jeu sont analysées et des stratégies pour gérer les risques statistiques à espérance infinie sont proposées. [eng] Fairness and the petersburg game . . When played in a large number of trials, the Petersburg game is only a special case of a generalized weak law of large numbers. The average gain of n trials tends in probability to l/2Logn (basis 2), a resuit already known since the end of the XIX th. century, at least, but the demonstration of which is relatively recent. Simulation evidences show that the fair solution is realistic, because the magnitude of n is not gigantic, hence the game is playable, even for risk-averse gamblers.. The paper shows that the size-distributions of some insurance claims belong to the « Petersburg » type, hence the game may be a realistic model. Economie consequences are analyzed and strategies to cope with statistical hazards without expectation are presented.
Suggested Citation
Daniel Zajdenweber, 1994.
"Équité et jeu de Saint-Pétersbourg,"
Revue Économique, Programme National Persée, vol. 45(1), pages 21-46.
Handle:
RePEc:prs:reveco:reco_0035-2764_1994_num_45_1_409508
DOI: 10.3406/reco.1994.409508
Note: DOI:10.3406/reco.1994.409508
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:reveco:reco_0035-2764_1994_num_45_1_409508. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/reco .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.