IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_1996_num_126_5_5824.html
   My bibliography  Save this article

Le ralentissement de la productivité des entreprises d'électricité au Texas : le rôle des marges, des rendements d'échelle et du progrès technique

Author

Listed:
  • Subal C. Kumbhakar

Abstract

[fre] Le ralentissement de la productivité des entreprises d'électricité au Texas : . le rôle des marges, des rendements d'échelle et du progrès technique . par Subal C. Kumbhakar . Cet article présente un modèle de maximisation du profit de la firme permettant de mesurer la croissance de la productivité totale des facteurs (PTF) et de la décomposer en trois éléments reliés au progrès technique, aux rendements d'échelle et à l'existence de marges sur les coûts. Le progrès technique est ensuite décomposé en un progrès technique pur, un progrès technique non neutre et un progrès technique augmentant l'échelle de production. Nous examinons le rôle de ces facteurs dans l'explication de la croissance de la PTF d'entreprises de production d'électricité dans l'État du Texas. Une caractéristique intéressante de cette étude réside dans l'utilisation de données de panel relatives à des entreprises d'électricité de l'État du Texas, observées entre 1966 et 1985, période qui inclut la période de réglementation des tarifs par les autorités publiques. L'utilisation de données de panel permet de modéliser le comportement de fixation des marges dans le temps sans avoir besoin d'imposer des contraintes a priori sur ces évolutions. Ces données permettent également de prendre en compte l'hétérogénéité des structures de coût des entreprises. Les résultats des estimations montrent que les marges et la croissance de la PTF ont sensiblement baissé durant la période de réglementation. Malgré cela, sur l'ensemble de la période étudiée, les comportements de fixation des marges par les entreprises ont largement contribué aux hausses de productivité observées. [eng] An Anatomy of the Productivity Slowdown: Markups, Returns to Scale, and Technical Change in Electric . Utilities in Texas By Subal C. Kumbhakar . This paper considers a profit maximizing model to measure total factor productivity (TFP) growth and decompose it into components attributed to technical change, returns to scale and markups. Technical change is further decomposed into pure, nonneutral, and scale augmenting components. The role of these factors is analyzed in accounting productivity growth of electric utilities in Texas. An interesting feature of the study is the use of panel data on individual electric utilities in Texas during 1966-1985, which covers periods before and after the introduction of statewide regulation. The availability of panel data allows us to model markup behavior over time without imposing any a priori behavior on them. The model also introduces and controls for heterogeneity in the cost structure of the utilities. Empirically we find that markups and TFP growth declined substantially during the year of statewide regulation. In spite of this declining tendancy it is found that markups were the major contributing factor in TFP growth during the entire sample period.

Suggested Citation

  • Subal C. Kumbhakar, 1996. "Le ralentissement de la productivité des entreprises d'électricité au Texas : le rôle des marges, des rendements d'échelle et du progrès technique," Économie et Prévision, Programme National Persée, vol. 126(5), pages 77-89.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_1996_num_126_5_5824
    DOI: 10.3406/ecop.1996.5824
    Note: DOI:10.3406/ecop.1996.5824
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.1996.5824
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_1996_num_126_5_5824
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.1996.5824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Morrison, Catherine J, 1992. "Markups in U.S. and Japanese Manufacturing: A Short-Run Econometric Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(1), pages 51-63, January.
    2. Appelbaum, Elie, 1979. "Testing price taking behavior," Journal of Econometrics, Elsevier, vol. 9(3), pages 283-294, February.
    3. Wansbeek, Tom & Kapteyn, Arie, 1989. "Estimation of the error-components model with incomplete panels," Journal of Econometrics, Elsevier, vol. 41(3), pages 341-361, July.
    4. Hall, Robert E, 1988. "The Relation between Price and Marginal Cost in U.S. Industry," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 921-947, October.
    5. Hulten, Charles R, 1973. "Divisia Index Numbers," Econometrica, Econometric Society, vol. 41(6), pages 1017-1025, November.
    6. Nelson, Randy A & Wohar, Mark E, 1983. "Regulation, Scale Economies, and Productivity in Steam-Electric Generation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(1), pages 57-79, February.
    7. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    8. Baltagi, Badi H & Griffin, James M, 1988. "A Generalized Error Component Model with Heteroscedastic Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(4), pages 745-753, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dobrinsky, Rumen & Korosi, Gabor & Markov, Nikolay & Halpern, Laszlo, 2006. "Price markups and returns to scale in imperfect markets: Bulgaria and Hungary," Journal of Comparative Economics, Elsevier, vol. 34(1), pages 92-110, March.
    2. Susanto Basu & John Fernald, 2001. "Why Is Productivity Procyclical? Why Do We Care?," NBER Chapters, in: New Developments in Productivity Analysis, pages 225-302, National Bureau of Economic Research, Inc.
    3. Andrea Vaona, 2016. "A nonparametric panel data approach to the cyclical dynamics of price-cost margins in the fourth Kondratieff wave," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 6(2), pages 155-170, August.
    4. Charles R. Hulten, 2000. "Total Factor Productivity: A Short Biography," NBER Working Papers 7471, National Bureau of Economic Research, Inc.
    5. Mamuneas, Theofanis P., 1999. "Spillovers from publicly financed R&D capital in high-tech industries," International Journal of Industrial Organization, Elsevier, vol. 17(2), pages 215-239, February.
    6. Catherine J. Morrison, 1989. "Markup Behavior in Durable and Nondurable Manufacturing: A production Theory Approach," NBER Working Papers 2941, National Bureau of Economic Research, Inc.
    7. Perekhozhuk, Oleksandr, 2013. "Moderne Konzepte zur Analyse der Preisbildung auf dem Faktormarkt mit unvollständigem Wettbewerb," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, issue 4, pages 99-106.
    8. Ali Akkemik, K., 2009. "Cost function estimates, scale economies and technological progress in the Turkish electricity generation sector," Energy Policy, Elsevier, vol. 37(1), pages 204-213, January.
    9. Oleksandr Perekhozhuk, 2013. "Modern Concepts for Pricing Analysis in Imperfect Competition Production Factor Market," Oblik i finansi, Institute of Accounting and Finance, issue 4, pages 99-106, December.
    10. Ajayi, Victor & Weyman-Jones, Thomas & Glass, Anthony, 2017. "Cost efficiency and electricity market structure: A case study of OECD countries," Energy Economics, Elsevier, vol. 65(C), pages 283-291.
    11. Chang, Dong-Shang & Chen, Yi-Tui & Chen, Wen-Den, 2009. "The exogenous factors affecting the cost efficiency of power generation," Energy Policy, Elsevier, vol. 37(12), pages 5540-5545, December.
    12. Noelke, Corinna M. & Raper, Kellie Curry, 1999. "Nonstructural And Statistical Nonparametric Market Power Tests: An Empirical Investigation," 1999 Annual meeting, August 8-11, Nashville, TN 21645, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Hisnanick, John J. & Kymn, Kern O., 1999. "Modeling economies of scale: the case of US electric power companies," Energy Economics, Elsevier, vol. 21(3), pages 225-237, June.
    14. Marcel Boyer & Rachidi Kotchoni, 2015. "How Much Do Cartel Overcharge?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 47(2), pages 119-153, September.
    15. W. Erwin Diewert, 1980. "Aggregation Problems in the Measurement of Capital," NBER Chapters, in: The Measurement of Capital, pages 433-538, National Bureau of Economic Research, Inc.
    16. Rotemberg, Julio J. & Woodford, Michael, 1999. "The cyclical behavior of prices and costs," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 16, pages 1051-1135, Elsevier.
    17. Takanori Ida & Tetsuya Kuwahara, 2004. "Yardstick Cost Comparison and Economies of Scale and Scope in Japan's Electric Power Industry," Asian Economic Journal, East Asian Economic Association, vol. 18(4), pages 423-438, December.
    18. Kamerschen, David R. & Klein, Peter G. & Porter, David V., 2005. "Market structure in the US electricity industry: A long-term perspective," Energy Economics, Elsevier, vol. 27(5), pages 731-751, September.
    19. Nuria Quella, 2006. "Intra- and Inter-sectoral Knowledge Spillovers and TFP Growth Rates," 2006 Meeting Papers 431, Society for Economic Dynamics.
    20. M. Ishaq Nadiri & Ingmar Prucha, 2001. "Dynamic Factor Demand Models and Productivity Analysis," NBER Chapters, in: New Developments in Productivity Analysis, pages 103-172, National Bureau of Economic Research, Inc.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_1996_num_126_5_5824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.