IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaop/v2014y2014i2id431p48-70.html
   My bibliography  Save this article

Additive Decomposition and Boundary Conditions in Wavelet-Based Forecasting Approaches

Author

Listed:
  • Milan Bašta

Abstract

An interesting approach to economic and financial time series forecasting consists of decomposing an input time series additively into several components, each component capturing the dynamics of a different frequency range. Consequently, each component is modelled and forecasted separately, the predictions being summed up to form an overall forecast of the input time series. The present paper considers one very important aspect of the forecasting procedure. More specifically, it provides a better understanding of how an additive decomposition of the input time series into several components can be obtained using the wavelet transform and how boundary conditions in the individual components should be properly treated. Even though these aspects are presented as a part of the wavelet theory in several books on wavelets, their implementation is prone to misinterpretations in the literature on applied time series forecasting, possibly due to the complexity of the wavelet transform. Since our exposition is focused predominantly on these aspects, it provides a concise explanation which may be helpful to practitioners. The maximal overlap discrete wavelet transform is employed, other types of wavelet transforms also being briefly discussed.

Suggested Citation

  • Milan Bašta, 2014. "Additive Decomposition and Boundary Conditions in Wavelet-Based Forecasting Approaches," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2014(2), pages 48-70.
  • Handle: RePEc:prg:jnlaop:v:2014:y:2014:i:2:id:431:p:48-70
    DOI: 10.18267/j.aop.431
    as

    Download full text from publisher

    File URL: http://aop.vse.cz/doi/10.18267/j.aop.431.html
    Download Restriction: free of charge

    File URL: http://aop.vse.cz/doi/10.18267/j.aop.431.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aop.431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. Wong & Wai-Cheung Ip & Zhongjie Xie & Xueli Lui, 2003. "Modelling and forecasting by wavelets, and the application to exchange rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 537-553.
    2. Ramsey, James B. & Zhang, Zhifeng, 1997. "The analysis of foreign exchange data using waveform dictionaries," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 341-372, December.
    3. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    2. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    3. Boryana Bogdanova & Ivan Ivanov, 2016. "A wavelet-based approach to the analysis and modelling of financial time series exhibiting strong long-range dependence: the case of Southeast Europe," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 655-673, March.
    4. Lakhwinder Pal Singh & Ravi Teja Challa, 2016. "Integrated Forecasting Using the Discrete Wavelet Theory and Artificial Intelligence Techniques to Reduce the Bullwhip Effect in a Supply Chain," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 17(2), pages 157-169, June.
    5. Deniz Kenan Kılıç & Ömür Uğur, 2018. "Multiresolution analysis of S&P500 time series," Annals of Operations Research, Springer, vol. 260(1), pages 197-216, January.
    6. Indranil Ghosh & Tamal Datta Chaudhuri, 2017. "Fractal Investigation and Maximal Overlap Discrete Wavelet Transformation (MODWT)-based Machine Learning Framework for Forecasting Exchange Rates," Studies in Microeconomics, , vol. 5(2), pages 105-131, December.
    7. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
    8. Shinhye Chang & Rangan Gupta & Stephen M. Miller, 2018. "Causality Between Per Capita Real GDP and Income Inequality in the U.S.: Evidence from a Wavelet Analysis," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 269-289, January.
    9. Emmanuel Haven & Xiaoquan Liu & Chenghu Ma & Liya Shen, 2013. "Revealing the Implied Risk-neutral MGF with the Wavelet Method," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    10. Kian-Ping Lim & Venus Khim-Sen Liew & Hock-Tsen Wong, 2003. "Weak-form Efficient Market Hypothesis, Behavioural Finance and Episodic Transient Dependencies: The Case of the Kuala Lumpur Stock Exchange," Finance 0312012, University Library of Munich, Germany.
    11. Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    12. Ying Fan & Abdullah Yavas, 2023. "Price Dynamics in Public and Private Commercial Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 67(1), pages 150-190, July.
    13. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    14. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    15. Fernandez Viviana P, 2005. "The International CAPM and a Wavelet-Based Decomposition of Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-37, December.
    16. Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
    17. Dominique Guégan & Justin Leroux, 2008. "Local Lyapunov exponents: Zero plays no role in Forecasting chaotic systems," Cahiers de recherche 08-10, HEC Montréal, Institut d'économie appliquée.
    18. Saiti, Buerhan & Bacha, Obiyathulla & Masih, Mansur, 2014. "Is the global leadership of the US financial market over other financial markets shaken by 2007-2009 financial crisis? Evidence from Wavelet Analysis," MPRA Paper 57064, University Library of Munich, Germany.
    19. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    20. Kregždė Arvydas & Kišonaitė Karolina, 2018. "Co-movements of Lithuanian and Central European Stock Markets Across Different Time Horizons: A Wavelet Approach," Ekonomika (Economics), Sciendo, vol. 97(2), pages 55-69, December.

    More about this item

    Keywords

    time series; wavelets; forecasting; decomposition; finance;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaop:v:2014:y:2014:i:2:id:431:p:48-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.