Author
Listed:
- Gholamreza Zare
- Nima Jafari
- Mehdi Hosseinzadeh
- Amir Sahafi
Abstract
Background: Recommender Systems (RSs) frequently face challenges in balancing exploration and exploitation, particularly in dynamic environments where user behaviors evolve over time. Traditional methods struggle to adapt to these complexities, limiting their effectiveness in real-world domains such as e-commerce, streaming services, and social networks.Objective: The objective of this study is to introduce DAC-GCN, a Dual Actor-Critic Graph Convolutional Network, designed to enhance recommendation accuracy, ranking quality, and adaptability to evolving user preferences. DAC-GCN merges graph-based learning with Deep Reinforcement Learning (DRL) techniques to improve both short-term and long-term user-item interactions.Methods: DAC-GCN utilizes a dual architecture with separate Graph Convolutional Networks (GCNs) for policy optimization and value estimation. It incorporates Multi-Hop Aggregation (MHA) to capture extended user-item dependencies and an attention mechanism to emphasize pivotal relationships. We evaluate DAC-GCN on benchmark datasets, including MovieLens 100K, MovieLens 1M, Amazon Subscription Boxes, Amazon Magazine Subscriptions, and Mod Cloth, using standard ranking metrics (Precision@K, Recall@K, NDCG@K, MRR@K, and Hit@K).Results: Experimental results demonstrate that DAC-GCN consistently outperforms state-of-the-art baselines, showing significant improvements in recommendation accuracy, ranking quality, and robustness to shifting user behaviors. The model's ability to capture complex user-item interactions is greatly enhanced by MHA and attention mechanisms, while the dual architecture ensures training stability.Conclusion: DAC-GCN offers a scalable, high-performance solution for modern recommender systems, effectively addressing challenges such as data sparsity and changing user preferences. By integrating graph-based methods with DRL, this study advances both the theory and practice of recommender systems and provides valuable insights for future research and practical applications.
Suggested Citation
Gholamreza Zare & Nima Jafari & Mehdi Hosseinzadeh & Amir Sahafi, .
"DAC-GCN: A Dual Actor-Critic Graph Convolutional Network with Multi-Hop Aggregation for Enhanced Recommender Systems,"
Acta Informatica Pragensia, Prague University of Economics and Business, vol. 0.
Handle:
RePEc:prg:jnlaip:v:preprint:id:261
DOI: 10.18267/j.aip.261
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaip:v:preprint:id:261. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.