IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaip/vpreprintid254.html
   My bibliography  Save this article

Induced Partitioning for Incremental Feature Selection via Rough Set Theory and Long-tail Position Grey Wolf Optimizer

Author

Listed:
  • Said Al Afghani Edsa
  • Khamron Sunat

Abstract

Background: Feature selection methods play a crucial role in handling challenges such as imbalanced classes, noisy data and high dimensionality. However, existing techniques, including swarm intelligence and set theory approaches, often struggle with high-dimensional datasets due to repeated reassessment of feature selection, leading to increased processing time and computational inefficiency.Objective: This study aims to develop an enhanced incremental feature selection method that minimizes dependency on the initial dataset while improving computational efficiency. Specifically, the approach focuses on dynamic sampling and adaptive optimization to address the challenges in high-dimensional data environments.Methods: We implement a dynamic sampling approach based on rough set theory, integrating the Long-Tail Position Grey Wolf Optimizer. This method incrementally adjusts to new data samples without relying on the original dataset for feature selection, reducing variance in partitioned datasets. The performance is evaluated on benchmark datasets, comparing the proposed method to existing techniques.Results: Experimental evaluations demonstrate that the proposed method outperforms existing techniques in terms of F1 score, precision, recall and computation time. The incremental adjustment and reduced dependence on the initial data improve the overall accuracy and efficiency of feature selection in high-dimensional contexts.Conclusion: This study offers a significant advancement in feature selection methods for high-dimensional datasets. By addressing computational demands and improving accuracy, the proposed approach contributes to data science and machine learning, paving the way for more efficient and reliable feature selection processes in complex data environments. Future work may focus on extending this method to new optimization frameworks and enhancing its adaptability.

Suggested Citation

  • Said Al Afghani Edsa & Khamron Sunat, . "Induced Partitioning for Incremental Feature Selection via Rough Set Theory and Long-tail Position Grey Wolf Optimizer," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 0.
  • Handle: RePEc:prg:jnlaip:v:preprint:id:254
    DOI: 10.18267/j.aip.254
    as

    Download full text from publisher

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.254.html
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aip.254?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaip:v:preprint:id:254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.