IDEAS home Printed from https://ideas.repec.org/a/prg/jnlaip/v2018y2018i1id115p74-103.html
   My bibliography  Save this article

An Overview of Approaches Evaluating Intelligence of Artificial Systems
[Přehled přístupů k vyhodnocování inteligence umělých systémů]

Author

Listed:
  • Ondřej Vadinský

Abstract

Artificial General Intelligence seeks to create an artificial system capable of solving many different and possibly unforeseen tasks thus being comparable in its intelligence to that of a human. Such an endeavour, however, requires suitable methods that can evaluate whether an artificial system is intelligent, and to what extent. This review paper searches for such evaluation methods. Therefore, an extensive literature overview is conducted that covers both philosophical and cognitive presumptions of intelligence as well as formal definitions and practical tests of intelligence grounded in Algorithmic Information Theory. Based on a comparison of the introduced approaches, the paper identifies two distinct groups based on fundamentally different presumptions. The one group of approaches, such as Turing test, is based on the presumption that success in a complex task is a sufficient condition for intelligence evaluation, while the other group of approaches, such as Algorithmic Intelligence Quotient test, also require explicit verification of success in simple tasks. This paper, therefore, concludes that the Algorithmic Intelligence Quotient test, derived from Universal Intelligence definition, is currently the most suitable candidate for a practical intelligence evaluation method of artificial systems. Although the test has several known limitations.

Suggested Citation

  • Ondřej Vadinský, 2018. "An Overview of Approaches Evaluating Intelligence of Artificial Systems [Přehled přístupů k vyhodnocování inteligence umělých systémů]," Acta Informatica Pragensia, Prague University of Economics and Business, vol. 2018(1), pages 74-103.
  • Handle: RePEc:prg:jnlaip:v:2018:y:2018:i:1:id:115:p:74-103
    DOI: 10.18267/j.aip.115
    as

    Download full text from publisher

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.115.html
    Download Restriction: free of charge

    File URL: http://aip.vse.cz/doi/10.18267/j.aip.115.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.18267/j.aip.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuemin Zheng & Jin Tao & Qinglin Sun & Hao Sun & Zengqiang Chen & Mingwei Sun & Feng Duan, 2022. "Deep-Reinforcement-Learning-Based Active Disturbance Rejection Control for Lateral Path Following of Parafoil System," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    3. Jingwei Sun & Jian Li & Hang Zhang, 2019. "Human representation of multimodal distributions as clusters of samples," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-29, May.
    4. Hongxin Yu & Lihui Zhang & Meng Zhang & Fengyue Jin & Yibing Wang, 2024. "Coordinated Ramp Metering Considering the Dynamics of Mixed-Autonomy Traffic," Sustainability, MDPI, vol. 16(22), pages 1-26, November.
    5. Yadh Hafsi & Edoardo Vittori, 2024. "Optimal Execution with Reinforcement Learning," Papers 2411.06389, arXiv.org.
    6. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    8. Li, Hao & Misra, Siddharth, 2021. "Reinforcement learning based automated history matching for improved hydrocarbon production forecast," Applied Energy, Elsevier, vol. 284(C).
    9. Tulika Saha & Sriparna Saha & Pushpak Bhattacharyya, 2020. "Towards sentiment aided dialogue policy learning for multi-intent conversations using hierarchical reinforcement learning," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-28, July.
    10. Lu, Jing & Meng, Yucan & Timmermans, Harry & Zhang, Anming, 2021. "Modeling hesitancy in airport choice: A comparison of discrete choice and machine learning methods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 230-250.
    11. Omid Rafieian, 2023. "Optimizing User Engagement Through Adaptive Ad Sequencing," Marketing Science, INFORMS, vol. 42(5), pages 910-933, September.
    12. Randall Spain & Jonathan Rowe & Andy Smith & Benjamin Goldberg & Robert Pokorny & Bradford Mott & James Lester, 2022. "A reinforcement learning approach to adaptive remediation in online training," The Journal of Defense Modeling and Simulation, , vol. 19(2), pages 173-193, April.
    13. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    14. Suzie Grondin & Arthur Charpentier & Philipp Ratz, 2025. "Beyond Human Intervention: Algorithmic Collusion through Multi-Agent Learning Strategies," Papers 2501.16935, arXiv.org.
    15. O’Malley, Cormac & de Mars, Patrick & Badesa, Luis & Strbac, Goran, 2023. "Reinforcement learning and mixed-integer programming for power plant scheduling in low carbon systems: Comparison and hybridisation," Applied Energy, Elsevier, vol. 349(C).
    16. Parag Parashar & Chun Han Chen & Chandni Akbar & Sze Ming Fu & Tejender S Rawat & Sparsh Pratik & Rajat Butola & Shih Han Chen & Albert S Lin, 2019. "Analytics-statistics mixed training and its fitness to semisupervised manufacturing," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-18, August.
    17. Jinho Lee & Jaewoo Kang, 2020. "Effectively training neural networks for stock index prediction: Predicting the S&P 500 index without using its index data," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    18. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    19. Antti J. Tanskanen, 2020. "Deep reinforced learning enables solving rich discrete-choice life cycle models to analyze social security reforms," Papers 2010.13471, arXiv.org, revised Feb 2022.
    20. Mahmoud Mahfouz & Angelos Filos & Cyrine Chtourou & Joshua Lockhart & Samuel Assefa & Manuela Veloso & Danilo Mandic & Tucker Balch, 2019. "On the Importance of Opponent Modeling in Auction Markets," Papers 1911.12816, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prg:jnlaip:v:2018:y:2018:i:1:id:115:p:74-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stanislav Vojir (email available below). General contact details of provider: https://edirc.repec.org/data/uevsecz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.