Author
Listed:
- Jin Qiu
- Katherine Cosmopoulos
- Michiel Pegtel
- Erik Hopmans
- Paul Murray
- Jaap Middeldorp
- Michael Shapiro
- David A Thorley-Lawson
Abstract
We have performed the first extensive profiling of Epstein-Barr virus (EBV) miRNAs on in vivo derived normal and neoplastic infected tissues. We describe a unique pattern of viral miRNA expression by normal infected cells in vivo expressing restricted viral latency programs (germinal center: Latency II and memory B: Latency I/0). This includes the complete absence of 15 of the 34 miRNAs profiled. These consist of 12 BART miRNAs (including approximately half of Cluster 2) and 3 of the 4 BHRF1 miRNAs. All but 2 of these absent miRNAs become expressed during EBV driven growth (Latency III). Furthermore, EBV driven growth is accompanied by a 5–10 fold down regulation in the level of the BART miRNAs expressed in germinal center and memory B cells. Therefore, Latency III also expresses a unique pattern of viral miRNAs. We refer to the miRNAs that are specifically expressed in EBV driven growth as the Latency III associated miRNAs. In EBV associated tumors that employ Latency I or II (Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric carcinoma), the Latency III associated BART but not BHRF1 miRNAs are up regulated. Thus BART miRNA expression is deregulated in the EBV associated tumors. This is the first demonstration that Latency III specific genes (the Latency III associated BARTs) can be expressed in these tumors. The EBV associated tumors demonstrate very similar patterns of miRNA expression yet were readily distinguished when the expression data were analyzed either by heat-map/clustering or principal component analysis. Systematic analysis revealed that the information distinguishing the tumor types was redundant and distributed across all the miRNAs. This resembles “secret sharing” algorithms where information can be distributed among a large number of recipients in such a way that any combination of a small number of recipients is able to understand the message. Biologically, this may be a consequence of functional redundancy between the miRNAs. Author Summary: miRNAs are small (∼22 bp) RNAs. They play central roles in many cellular processes. Epstein-Barr virus (EBV) is an important human pathogen that establishes persistent infection in nearly all humans and is associated with several common forms of cancer. To achieve persistent infection, the virus infects B cells and uses a series of discrete transcription programs to drive these B cells to become memory B cells – the site of long term persistent infection. It was the first human virus found to express miRNAs of which there are at least 40. The functions of a few of these miRNAs are known but their expression in latently infected normal and neoplastic tissues in vivo have not been described. Here we have profiled EBV miRNAs in a wide range of infected normal and neoplastic tissue. We demonstrate that there are indeed latency program specific patterns of viral miRNA expression and that these patterns are disrupted in EBV associated tumors implicating EBV miRNAs both in long term persistence and in oncogenesis.
Suggested Citation
Jin Qiu & Katherine Cosmopoulos & Michiel Pegtel & Erik Hopmans & Paul Murray & Jaap Middeldorp & Michael Shapiro & David A Thorley-Lawson, 2011.
"A Novel Persistence Associated EBV miRNA Expression Profile Is Disrupted in Neoplasia,"
PLOS Pathogens, Public Library of Science, vol. 7(8), pages 1-16, August.
Handle:
RePEc:plo:ppat00:1002193
DOI: 10.1371/journal.ppat.1002193
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:1002193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.