IDEAS home Printed from https://ideas.repec.org/a/plo/ppat00/0030135.html
   My bibliography  Save this article

T Cells Contain an RNase-Insensitive Inhibitor of APOBEC3G Deaminase Activity

Author

Listed:
  • Beth K Thielen
  • Kevin C Klein
  • Lorne W Walker
  • Mary Rieck
  • Jane H Buckner
  • Garrett W Tomblingson
  • Jaisri R Lingappa

Abstract

The deoxycytidine deaminase APOBEC3G (A3G) is expressed in human T cells and inhibits HIV-1 replication. When transfected into A3G-deficient epithelial cell lines, A3G induces catastrophic hypermutation by deaminating the HIV-1 genome. Interestingly, studies suggest that endogenous A3G in T cells induces less hypermutation than would be expected. However, to date, the specific deaminase activity of endogenous A3G in human CD4+ T cells has not been examined directly. Here, we compared deaminase activity of endogenous and exogenous A3G in various human cell lines using a standard assay and a novel, quantitative, high-throughput assay. Exogenous A3G in epithelial cell lysates displayed deaminase activity only following RNase treatment, as expected given that A3G is known to form an enzymatically inactive RNA-containing complex. Surprisingly, comparable amounts of endogenous A3G from T cell lines or from resting or activated primary CD4+ T cells exhibited minimal deaminase activity, despite RNase treatment. Specific deaminase activity of endogenous A3G in H9, CEM, and other T cell lines was up to 36-fold lower than specific activity of exogenous A3G in epithelial-derived cell lines. Furthermore, RNase-treated T cell lysates conferred a dose-dependent inhibition to epithelial cell lysates expressing enzymatically active A3G. These studies suggest that T cells, unlike epithelial-derived cell lines, express an unidentified RNase-resistant factor that inhibits A3G deaminase activity. This factor could be responsible for reduced levels of hypermutation in T cells, and its identification and blockade could offer a means for increasing antiretroviral intrinsic immunity of T cells.: APOBEC3G (A3G) is an antiviral enzyme that is expressed in human T cells and macrophages, which are the cell types infected by HIV. Early in the HIV life cycle, the HIV RNA genome is reverse transcribed into DNA. A3G can modify this DNA enzymatically, leading to high rates of mutation such that the virus can no longer replicate. To date, most studies of A3G's enzymatic activity have utilized cell lines (293T and HeLa) that can be transfected to express A3G but do not express it endogenously. A report of unexpectedly low levels of mutation in viral DNA from HIV-infected human T cells led us to investigate regulation of A3G enzymatic activity in T cells. We developed a high-throughput assay to compare the enzymatic activity of endogenous A3G in T cells versus transfected (exogenous) A3G. Surprisingly, enzymatic activity of A3G from human T cell lines and primary T cells was very low relative to A3G from transfected cells, even when corrected for A3G protein amount. Moreover, T cell lysates inhibited enzymatic activity of exogenously expressed A3G. These data suggest that enzymatic activity of endogenous A3G in human T cells is inhibited by an uncharacterized mechanism that may protect the host from this DNA mutator and could have important implications for A3G antiviral activity in vivo.

Suggested Citation

  • Beth K Thielen & Kevin C Klein & Lorne W Walker & Mary Rieck & Jane H Buckner & Garrett W Tomblingson & Jaisri R Lingappa, 2007. "T Cells Contain an RNase-Insensitive Inhibitor of APOBEC3G Deaminase Activity," PLOS Pathogens, Public Library of Science, vol. 3(9), pages 1-15, September.
  • Handle: RePEc:plo:ppat00:0030135
    DOI: 10.1371/journal.ppat.0030135
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.0030135
    Download Restriction: no

    File URL: https://journals.plos.org/plospathogens/article/file?id=10.1371/journal.ppat.0030135&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.ppat.0030135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hui Zhang & Bin Yang & Roger J. Pomerantz & Chune Zhang & Shyamala C. Arunachalam & Ling Gao, 2003. "The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA," Nature, Nature, vol. 424(6944), pages 94-98, July.
    2. Jayanta Chaudhuri & Chan Khuong & Frederick W. Alt, 2004. "Replication protein A interacts with AID to promote deamination of somatic hypermutation targets," Nature, Nature, vol. 430(7003), pages 992-998, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iraj Hosseini & Feilim Mac Gabhann, 2012. "Multi-Scale Modeling of HIV Infection in vitro and APOBEC3G-Based Anti-Retroviral Therapy," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-17, February.
    2. Patric Jern & Rebecca A Russell & Vinay K Pathak & John M Coffin, 2009. "Likely Role of APOBEC3G-Mediated G-to-A Mutations in HIV-1 Evolution and Drug Resistance," PLOS Pathogens, Public Library of Science, vol. 5(4), pages 1-9, April.
    3. Vanessa B Soros & Wes Yonemoto & Warner C Greene, 2007. "Newly Synthesized APOBEC3G Is Incorporated into HIV Virions, Inhibited by HIV RNA, and Subsequently Activated by RNase H," PLOS Pathogens, Public Library of Science, vol. 3(2), pages 1-16, February.
    4. Hanjing Yang & Kyumin Kim & Shuxing Li & Josue Pacheco & Xiaojiang S. Chen, 2022. "Structural basis of sequence-specific RNA recognition by the antiviral factor APOBEC3G," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:ppat00:0030135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plospathogens (email available below). General contact details of provider: https://journals.plos.org/plospathogens .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.