Author
Listed:
- Sangjun Son
- Yong-chan Park
- Minyong Cho
- U Kang
Abstract
How can we accurately and efficiently decompose a tensor stream? Tensor decomposition is a crucial task in a wide range of applications and plays a significant role in latent feature extraction and estimation of unobserved entries of data. The problem of efficiently decomposing tensor streams has been of great interest because many real-world data dynamically change over time. However, existing methods for dynamic tensor decomposition sacrifice the accuracy too much, which limits their usages in practice. Moreover, the accuracy loss becomes even more serious when the tensor stream has an inconsistent temporal pattern since the current methods cannot adapt quickly to a sudden change in data. In this paper, we propose DAO-CP, an accurate and efficient online CP decomposition method which adapts to data changes. DAO-CP tracks local error norms of the tensor streams, detecting a change point of the error norms. It then chooses the best strategy depending on the degree of changes to balance the trade-off between speed and accuracy. Specifically, DAO-CP decides whether to (1) reuse the previous factor matrices for the fast running time or (2) discard them and restart the decomposition to increase the accuracy. Experimental results show that DAO-CP achieves the state-of-the-art accuracy without noticeable loss of speed compared to existing methods.
Suggested Citation
Sangjun Son & Yong-chan Park & Minyong Cho & U Kang, 2022.
"DAO-CP: Data-Adaptive Online CP decomposition for tensor stream,"
PLOS ONE, Public Library of Science, vol. 17(4), pages 1-18, April.
Handle:
RePEc:plo:pone00:0267091
DOI: 10.1371/journal.pone.0267091
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0267091. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.