IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0266489.html
   My bibliography  Save this article

Trajectory-based characteristic analysis and decision modeling of the lane-changing process in intertunnel weaving sections

Author

Listed:
  • Yi Zhao
  • Zhiqi Wang
  • Yuxuan Wu
  • Jianxiao Ma

Abstract

Existing lane-changing models generally neglect the detailed modeling of lane-changing actions and model lane-changing only as an instantaneous event. In this study, an intertunnel weaving section was taken as the background, the lane-changing duration and distance in the lane-changing process were taken as the main research objects. The detailed modeling of a lane-changing action was emphasized. Aerial videos of intertunnel weaving sections were collected, and accurate vehicle trajectory data were extracted. Basic data analysis shows that the lane-changing duration has a lognormal distribution and the lane-changing distance has a normal distribution. To analyze the difference of the lane-changing behavior characteristics in different lane-changing environments, based on the lead spacing and lag spacing in the target lane, a hierarchical clustering algorithm was applied to classify the lane-changing environment into six different types. Then, a deep neural network regression model was applied to model the lane-changing process for each environment type. The results show that the horizontal distribution, vertical distribution and statistical characteristics of the lane changing points under different lane-changing environments are significantly different. The prediction accuracy of the lane-changing distance after classification is improved by at least 61%, and the prediction accuracy of the lane-changing duration after classification is improved by at least 57%. It is also found that lane-changing behavior characteristics with large or small lag spacing are easier to predict, while in the other cases, the randomness of the lane-changing behavior characteristics is more obvious. The research results can be incorporated into lane-changing decision assistance systems and micro traffic simulation models to make the assistance system safer and more effective, and the simulation outputs should be more realistic and accurate.

Suggested Citation

  • Yi Zhao & Zhiqi Wang & Yuxuan Wu & Jianxiao Ma, 2022. "Trajectory-based characteristic analysis and decision modeling of the lane-changing process in intertunnel weaving sections," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-17, April.
  • Handle: RePEc:plo:pone00:0266489
    DOI: 10.1371/journal.pone.0266489
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0266489
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0266489&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0266489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Guo, Yuntao & Souders, Dustin & Labi, Samuel & Peeta, Srinivas & Benedyk, Irina & Li, Yujie, 2021. "Paving the way for autonomous Vehicles: Understanding autonomous vehicle adoption and vehicle fuel choice under user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 364-398.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    2. Tianpei Tang & Xiwei Wang & Jianbing Wu & Meining Yuan & Yuntao Guo & Xunqian Xu, 2022. "Determinants and the Moderating Effects of Individual Characteristics on Autonomous Vehicle Adoption in China," IJERPH, MDPI, vol. 20(1), pages 1-17, December.
    3. You Kong & Jihong Ou & Longfei Chen & Fengchun Yang & Bo Yu, 2023. "The Environmental Impacts of Automated Vehicles on Parking: A Systematic Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    4. Agrawal, Shubham & Schuster, Amy M. & Britt, Noah & Mack, Elizabeth A. & Tidwell, Michael L. & Cotten, Shelia R., 2023. "Building on the past to help prepare the workforce for the future with automated vehicles: A systematic review of automated passenger vehicle deployment timelines," Technology in Society, Elsevier, vol. 72(C).
    5. Bridgelall, Raj & Askarzadeh, Taraneh & Tolliver, Denver D., 2023. "Introducing an efficiency index to evaluate eVTOL designs," Technological Forecasting and Social Change, Elsevier, vol. 191(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0266489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.