IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0265614.html
   My bibliography  Save this article

An efficient algorithm calculating common solvent accessible volume

Author

Listed:
  • In Jung Kim
  • Hyuntae Na

Abstract

The solvent accessible surface area and the solvent accessible volume are measurements commonly used in implicit solvent models to include the effect of forces exerted by solvents on the protein surfaces (or the atoms on protein surfaces). The two measurements have limitations in describing interactions between proteins (or proteins’ atoms) mediated/bridged by solvents. This is because describing the interactions between proteins should be able to capture the chain of protein-solvent-protein interactions while the solvent accessible surface area or the solvent accessible volume can capture only protein-solvent interactions. If we represent the solvent as a continuous medium, we can consider an atom of a protein can effectively interact with the solvent within a certain distance from its surface (or its own solvent-interacting sphere). In this case, the protein-solvent-protein interactions can be measured by the amount of solvent interacting with two proteins’ atoms at the same time (or the volume shared by the two atoms’ solvent-interacting spheres excluding the volumes occupied by proteins’ atoms). We call the shared volume as the common solvent accessible volume (CSAV); there has been no method developed to determine the CSAV. In this work, we propose a new sweep-line-based method that efficiently calculates the common solvent accessible volume. The performance and accuracy of the proposed sweep-line-based method are compared with those of the naïve voxel-based method. The proposed method takes log-linear time to the number of atoms involved in a CSAV calculation and linear time to the resolution. Our results, tested with 52 protein structures of various sizes, show that the proposed sweep-line-based method is superior to the voxel-based method in both computational efficiency and accuracy.

Suggested Citation

  • In Jung Kim & Hyuntae Na, 2022. "An efficient algorithm calculating common solvent accessible volume," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-24, March.
  • Handle: RePEc:plo:pone00:0265614
    DOI: 10.1371/journal.pone.0265614
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265614
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0265614&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0265614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mazen Ahmad & Wei Gu & Tihamér Geyer & Volkhard Helms, 2011. "Adhesive water networks facilitate binding of protein interfaces," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iain H Moal & Paul A Bates, 2012. "Kinetic Rate Constant Prediction Supports the Conformational Selection Mechanism of Protein Binding," PLOS Computational Biology, Public Library of Science, vol. 8(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0265614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.