IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0265340.html
   My bibliography  Save this article

CircuitBot: Learning to survive with robotic circuit drawing

Author

Listed:
  • Xianglong Tan
  • Weijie Lyu
  • Andre Rosendo

Abstract

Robots with the ability to actively acquire power from surroundings will be greatly beneficial for long-term autonomy and to survive in uncertain environments. In this work, a scenario is presented where a robot has limited energy, and the only way to survive is to access the energy from an unregulated power source. With no wires or resistors available, the robot heuristically learns to maximize the input voltage on its system while avoiding potential obstacles during the connection. CircuitBot is a 6 DOF manipulator capable of drawing circuit patterns with graphene-based conductive ink, and it uses a state-of-the-art continuous/categorical Bayesian Optimization to optimize the placement of conductive shapes and maximize the energy it receives. Our comparative results with traditional Bayesian Optimization and Genetic algorithms show that the robot learns to maximize the voltage within the smallest number of trials, even when we introduce obstacles to ground the circuit and steal energy from the robot. As autonomous robots become more present, in our houses and other planets, our proposed method brings a novel way for machines to keep themselves functional by optimizing their own electric circuits.

Suggested Citation

  • Xianglong Tan & Weijie Lyu & Andre Rosendo, 2022. "CircuitBot: Learning to survive with robotic circuit drawing," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-14, March.
  • Handle: RePEc:plo:pone00:0265340
    DOI: 10.1371/journal.pone.0265340
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265340
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0265340&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0265340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andre Rosendo & Marco von Atzigen & Fumiya Iida, 2017. "The trade-off between morphology and control in the co-optimized design of robots," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-14, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0265340. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.