IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0265113.html
   My bibliography  Save this article

Provide energy-aware routing protocol in wireless sensor networks using bacterial foraging optimization algorithm and mobile sink

Author

Listed:
  • Shayesteh Tabatabaei

Abstract

Wireless sensor networks (WSNs) include small sensor nodes with battery and processing power and limited memory units then improving power consumption is a major design challenge for any sensor network. In this paper, a new algorithm for routing in the wireless sensor network is proposed using the ultra-innovative algorithm for bacterial Foraging and mobile sink, which leads to energy efficiency. In the proposed method, the number of sensor nodes is determined according to two criteria: the amount of energy on the battery surface and the distance to the sink ahead, which leads to the formation of regular clusters in the network. Nodes adopt a multi-step routing scheme within the network to communicate with the sink. also, the mobile sink is used to balance the load and help consume uniform energy throughout the network. The simulation results show better performance of the proposed method in terms of energy consumption by 17.99%, throughput rate by 30.04%, end-to-end delay by 46.04%, signal-to-noise ratio by 32.81%, delivery rate successfully Data to the sink is 0.80 times higher than the AFSRP (Artificial Fish Swarm Routing Protocol).

Suggested Citation

  • Shayesteh Tabatabaei, 2022. "Provide energy-aware routing protocol in wireless sensor networks using bacterial foraging optimization algorithm and mobile sink," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-23, March.
  • Handle: RePEc:plo:pone00:0265113
    DOI: 10.1371/journal.pone.0265113
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0265113
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0265113&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0265113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashraf A. Taha & Hagar O. Abouroumia & Shimaa A. Mohamed & Lamiaa A. Amar, 2022. "Enhancing the Lifetime and Energy Efficiency of Wireless Sensor Networks Using Aquila Optimizer Algorithm," Future Internet, MDPI, vol. 14(12), pages 1-17, December.
    2. Guangjiao Chen & Guifen Chen, 2022. "A Method of Relay Node Selection for UAV Cluster Networks Based on Distance and Energy Constraints," Sustainability, MDPI, vol. 14(23), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0265113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.