IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0264892.html
   My bibliography  Save this article

Inference in epidemiological agent-based models using ensemble-based data assimilation

Author

Listed:
  • Tadeo Javier Cocucci
  • Manuel Pulido
  • Juan Pablo Aparicio
  • Juan Ruíz
  • Mario Ignacio Simoy
  • Santiago Rosa

Abstract

To represent the complex individual interactions in the dynamics of disease spread informed by data, the coupling of an epidemiological agent-based model with the ensemble Kalman filter is proposed. The statistical inference of the propagation of a disease by means of ensemble-based data assimilation systems has been studied in previous works. The models used are mostly compartmental models representing the mean field evolution through ordinary differential equations. These techniques allow to monitor the propagation of the infections from data and to estimate several parameters of epidemiological interest. However, there are many important features which are based on the individual interactions that cannot be represented in the mean field equations, such as social network and bubbles, contact tracing, isolating individuals in risk, and social network-based distancing strategies. Agent-based models can describe contact networks at an individual level, including demographic attributes such as age, neighborhood, household, workplaces, schools, entertainment places, among others. Nevertheless, these models have several unknown parameters which are thus difficult to prescribe. In this work, we propose the use of ensemble-based data assimilation techniques to calibrate an agent-based model using daily epidemiological data. This raises the challenge of having to adapt the agent populations to incorporate the information provided by the coarse-grained data. To do this, two stochastic strategies to correct the model predictions are developed. The ensemble Kalman filter with perturbed observations is used for the joint estimation of the state and some key epidemiological parameters. We conduct experiments with an agent based-model designed for COVID-19 and assess the proposed methodology on synthetic data and on COVID-19 daily reports from Ciudad Autónoma de Buenos Aires, Argentina.

Suggested Citation

  • Tadeo Javier Cocucci & Manuel Pulido & Juan Pablo Aparicio & Juan Ruíz & Mario Ignacio Simoy & Santiago Rosa, 2022. "Inference in epidemiological agent-based models using ensemble-based data assimilation," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-28, March.
  • Handle: RePEc:plo:pone00:0264892
    DOI: 10.1371/journal.pone.0264892
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264892
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0264892&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0264892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seth Flaxman & Swapnil Mishra & Axel Gandy & H. Juliette T. Unwin & Thomas A. Mellan & Helen Coupland & Charles Whittaker & Harrison Zhu & Tresnia Berah & Jeffrey W. Eaton & Mélodie Monod & Azra C. Gh, 2020. "Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe," Nature, Nature, vol. 584(7820), pages 257-261, August.
    2. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    2. J. Silvestre, & T. Araújo & M. St. Aubyn, 2016. "Economic growth and individual satisfaction in an agent-based economy," Working Papers Department of Economics 2016/19, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    3. Foliano, Francesca & Tonei, Valentina & Sevilla, Almudena, 2024. "Social restrictions, leisure and well-being," Labour Economics, Elsevier, vol. 87(C).
    4. Deniz Erdemlioglu & Nikola Gradojevic, 2021. "Heterogeneous investment horizons, risk regimes, and realized jumps," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 617-643, January.
    5. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    6. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    7. Eugenio Caverzasi & Antoine Godin, 2013. "Stock-flow Consistent Modeling through the Ages," Economics Working Paper Archive wp_745, Levy Economics Institute.
    8. Westerhoff Frank H., 2008. "The Use of Agent-Based Financial Market Models to Test the Effectiveness of Regulatory Policies," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 228(2-3), pages 195-227, April.
    9. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    10. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    11. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Emanuele Amodio & Michele Battisti & Antonio Francesco Gravina & Andrea Mario Lavezzi & Giuseppe Maggio, 2023. "School‐age vaccination, school openings and Covid‐19 diffusion," Health Economics, John Wiley & Sons, Ltd., vol. 32(5), pages 1084-1100, May.
    13. repec:hal:spmain:info:hdl:2441/5bnglqth5987gaq6dhju3psjn3 is not listed on IDEAS
    14. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    15. Dirk Helbing & Thomas U. Grund, 2013. "Editorial: Agent-Based Modeling And Techno-Social Systems," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 16(04n05), pages 1-3.
    16. Aldo Carranza & Marcel Goic & Eduardo Lara & Marcelo Olivares & Gabriel Y. Weintraub & Julio Covarrubia & Cristian Escobedo & Natalia Jara & Leonardo J. Basso, 2022. "The Social Divide of Social Distancing: Shelter-in-Place Behavior in Santiago During the Covid-19 Pandemic," Management Science, INFORMS, vol. 68(3), pages 2016-2027, March.
    17. Frank Westerhoff & Martin Hohnisch, 2010. "Consumer sentiment and countercyclical fiscal policies," International Review of Applied Economics, Taylor & Francis Journals, vol. 24(5), pages 609-618.
    18. Roberto Veneziani & Luca Zamparelli & Michalis Nikiforos & Gennaro Zezza, 2017. "Stock-Flow Consistent Macroeconomic Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1204-1239, December.
    19. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    20. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    21. Boswijk, H. Peter & Laeven, Roger J.A. & Vladimirov, Evgenii, 2024. "Estimating option pricing models using a characteristic function-based linear state space representation," Journal of Econometrics, Elsevier, vol. 244(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0264892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.