IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0264070.html
   My bibliography  Save this article

How large of a grant size is appropriate? Evidence from the National Natural Science Foundation of China

Author

Listed:
  • Peixin Duan

Abstract

Under the current universal trend towards larger grant sizes in research funding systems, we focus on how large of a grant size is appropriate. We study the directional returns to scale (RTS) to assess whether current grant sizes are the most productive. We take the General Program of the National Natural Science Foundation of China (NSFC) as an example and select three samples of physics, geography and management for an empirical study. We find that the optimal input direction and the most productive grant size scale is different for the three disciplines; based on the current grant size, physics should not expand the grant size and team size input, geography should further increase the grant size to improve performance and management should further expand the team size rather than the grant size. In this paper, we demonstrate a new method to calculate the optimal direction, which is the lowest rate of congestion, according to the characteristics of the General Program. Based on these results, we also calculate the most productive scale size. This method has certain value for project management.

Suggested Citation

  • Peixin Duan, 2022. "How large of a grant size is appropriate? Evidence from the National Natural Science Foundation of China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-14, February.
  • Handle: RePEc:plo:pone00:0264070
    DOI: 10.1371/journal.pone.0264070
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264070
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0264070&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0264070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, December.
    2. Yang, Guo-liang & Rousseau, Ronald & Yang, Li-ying & Liu, Wen-bin, 2014. "A study on directional returns to scale," Journal of Informetrics, Elsevier, vol. 8(3), pages 628-641.
    3. Banker, Rajiv D. & Thrall, R. M., 1992. "Estimation of returns to scale using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 62(1), pages 74-84, October.
    4. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    5. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    6. Lee, Taehwee & Yeo, Gi-Tae & Thai, Vinh V., 2014. "Environmental efficiency analysis of port cities: Slacks-based measure data envelopment analysis approach," Transport Policy, Elsevier, vol. 33(C), pages 82-88.
    7. Abdullah Gök & John Rigby & Philip Shapira, 2016. "The impact of research funding on scientific outputs: Evidence from six smaller European countries," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(3), pages 715-730, March.
    8. Soleimani-damaneh, M. & Jahanshahloo, G.R. & Reshadi, M., 2006. "On the estimation of returns-to-scale in FDH models," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1055-1059, October.
    9. Sarabjeet D. Natesan & Rahul Ratnakar Marathe, 2017. "Evaluation of MGNREGA: data envelopment analysis approach," International Journal of Social Economics, Emerald Group Publishing Limited, vol. 44(2), pages 181-194, February.
    10. Takanori Ida & Naomi Fukuzawa, 2013. "Effects of large-scale research funding programs: a Japanese case study," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1253-1273, March.
    11. Torben Schubert & Guoliang Yang, 2016. "Institutional change and the optimal size of universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1129-1153, September.
    12. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    13. Yue Liu & Lixin Tian & Zhuyun Xie & Zaili Zhen & Huaping Sun, 2021. "Option to survive or surrender: carbon asset management and optimization in thermal power enterprises from China," Papers 2104.04729, arXiv.org.
    14. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    15. Kao, Chiang, 2022. "Measuring efficiency in a general production possibility set allowing for negative data: An extension and a focus on returns to scale," European Journal of Operational Research, Elsevier, vol. 296(1), pages 267-276.
    16. Banker, Rajiv D. & Chang, Hsihui & Cooper, William W., 1996. "Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 89(3), pages 473-481, March.
    17. William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Data Envelopment Analysis: History, Models, and Interpretations," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 1-39, Springer.
    18. Sun, Huaping & Edziah, Bless Kofi & Sun, Chuanwang & Kporsu, Anthony Kwaku, 2019. "Institutional quality, green innovation and energy efficiency," Energy Policy, Elsevier, vol. 135(C).
    19. Hu, Albert G.Z., 2020. "Public funding and the ascent of Chinese science: Evidence from the National Natural Science Foundation of China," Research Policy, Elsevier, vol. 49(5).
    20. Victor V. Podinovski & Finn R. Førsund, 2010. "Differential Characteristics of Efficient Frontiers in Data Envelopment Analysis," Operations Research, INFORMS, vol. 58(6), pages 1743-1754, December.
    21. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "Measurement of returns to scale using a non-radial DEA model: A range-adjusted measure approach," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1918-1946, February.
    22. Rajiv D. Banker & William W. Cooper & Lawrence M. Seiford & Joe Zhu, 2011. "Returns to Scale in DEA," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 41-70, Springer.
    23. Taleb, Mushtaq & Khalid, Ruzelan & Ramli, Razamin & Ghasemi, Mohammad Reza & Ignatius, Joshua, 2022. "An integrated bi-objective data envelopment analysis model for measuring returns to scale," European Journal of Operational Research, Elsevier, vol. 296(3), pages 967-979.
    24. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    25. Mohammad Khodabakhshi & Farhad Hosseinzadeh Lotfi & Kourosh Aryavash, 2014. "Review of Input Congestion Estimating Methods in DEA," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, April.
    26. Carter Bloch & Jesper W Schneider & Thomas Sinkjær, 2016. "Size, Accumulation and Performance for Research Grants: Examining the Role of Size for Centres of Excellence," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    27. Krist Vaesen & Joel Katzav, 2017. "How much would each researcher receive if competitive government research funding were distributed equally among researchers?," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-11, September.
    28. Chen, Yao, 2003. "A non-radial Malmquist productivity index with an illustrative application to Chinese major industries," International Journal of Production Economics, Elsevier, vol. 83(1), pages 27-35, January.
    29. Vincent Larivière & Benoit Macaluso & Éric Archambault & Yves Gingras, 2010. "Which scientific elites? On the concentration of research funds, publications and citations," Research Evaluation, Oxford University Press, vol. 19(1), pages 45-53, March.
    30. Zhu, Joe, 2001. "Super-efficiency and DEA sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 129(2), pages 443-455, March.
    31. Fukuyama, Hirofumi, 2003. "Scale characterizations in a DEA directional technology distance function framework," European Journal of Operational Research, Elsevier, vol. 144(1), pages 108-127, January.
    32. Henrik Dimke & Maria Theresa Norn & Peter Munk Christiansen & Jeppe Wohlert & Nikolaj Thomas Zinner, 2019. "Most scientists prefer small and mid-sized research grants," Nature Human Behaviour, Nature, vol. 3(8), pages 765-767, August.
    33. Carter Bloch & Mads P. Sørensen, 2015. "The size of research funding: Trends and implications," Science and Public Policy, Oxford University Press, vol. 42(1), pages 30-43.
    34. Bert Balk & Rolf Färe & Giannis Karagiannis, 2015. "On directional scale elasticities," Journal of Productivity Analysis, Springer, vol. 43(1), pages 99-104, February.
    35. António Osório & Lutz Bornmann, 2021. "On the disruptive power of small-teams research," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 117-133, January.
    36. Siri Brorstad Borlaug, 2016. "Moral hazard and adverse selection in research funding: Centres of excellence in Norway and Sweden," Science and Public Policy, Oxford University Press, vol. 43(3), pages 352-362.
    37. Dan Rosen & Claire Schaffnit & Joseph Paradi, 1998. "Marginal Rates and Two-dimensional Level Curves in DEA," Journal of Productivity Analysis, Springer, vol. 9(3), pages 205-232, March.
    38. Yue Liu & Aijun Yang & Jijian Zhang & Jingjing Yao, 2020. "An Optimal Stopping Problem of Detecting Entry Points for Trading Modeled by Geometric Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 827-843, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor V. Podinovski & Robert G. Chambers & Kazim Baris Atici & Iryna D. Deineko, 2016. "Marginal Values and Returns to Scale for Nonparametric Production Frontiers," Operations Research, INFORMS, vol. 64(1), pages 236-250, February.
    2. Sahoo, Biresh K & Khoveyni, Mohammad & Eslami, Robabeh & Chaudhury, Pradipta, 2016. "Returns to scale and most productive scale size in DEA with negative data," European Journal of Operational Research, Elsevier, vol. 255(2), pages 545-558.
    3. Podinovski, Victor V., 2017. "Returns to scale in convex production technologies," European Journal of Operational Research, Elsevier, vol. 258(3), pages 970-982.
    4. Mehdiloo, Mahmood & Podinovski, Victor V., 2019. "Selective strong and weak disposability in efficiency analysis," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1154-1169.
    5. Podinovski, Victor V., 2019. "Direct estimation of marginal characteristics of nonparametric production frontiers in the presence of undesirable outputs," European Journal of Operational Research, Elsevier, vol. 279(1), pages 258-276.
    6. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    7. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    8. Giovanni Cesaroni & Kristiaan Kerstens & Ignace Van de Woestyne, 2017. "Estimating scale economies in non-convex production models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1442-1451, November.
    9. Zelenyuk, Valentin, 2013. "A scale elasticity measure for directional distance function and its dual: Theory and DEA estimation," European Journal of Operational Research, Elsevier, vol. 228(3), pages 592-600.
    10. Torben Schubert & Guoliang Yang, 2016. "Institutional change and the optimal size of universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1129-1153, September.
    11. Sahoo, Biresh K. & Tone, Kaoru, 2013. "Non-parametric measurement of economies of scale and scope in non-competitive environment with price uncertainty," Omega, Elsevier, vol. 41(1), pages 97-111.
    12. F R Førsund & L Hjalmarsson, 2004. "Calculating scale elasticity in DEA models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1023-1038, October.
    13. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "The measurement of returns to scale under a simultaneous occurrence of multiple solutions in a reference set and a supporting hyperplane," European Journal of Operational Research, Elsevier, vol. 181(2), pages 549-570, September.
    14. Dellnitz, Andreas & Tavana, Madjid, 2024. "Data envelopment analysis: From non-monotonic to monotonic scale elasticities," European Journal of Operational Research, Elsevier, vol. 318(2), pages 549-559.
    15. Victor V. Podinovski & Ole Bent Olesen & Cláudia S. Sarrico, 2018. "Nonparametric Production Technologies with Multiple Component Processes," Operations Research, INFORMS, vol. 66(1), pages 282-300, January.
    16. Seda Busra Sarac & Kazim Baris Atici & Aydin Ulucan, 2022. "Elasticity measurement on multiple levels of DEA frontiers: an application to agriculture," Journal of Productivity Analysis, Springer, vol. 57(3), pages 313-324, June.
    17. Hadjicostas, Petros & Soteriou, Andreas C., 2006. "One-sided elasticities and technical efficiency in multi-output production: A theoretical framework," European Journal of Operational Research, Elsevier, vol. 168(2), pages 425-449, January.
    18. Antonella Basso & Stefania Funari, 2017. "The role of fund size in the performance of mutual funds assessed with DEA models," The European Journal of Finance, Taylor & Francis Journals, vol. 23(6), pages 457-473, May.
    19. Zhu, Joe, 2000. "Further discussion on linear production functions and DEA," European Journal of Operational Research, Elsevier, vol. 127(3), pages 611-618, December.
    20. Forsund, Finn R. & Sarafoglou, Nikias, 2005. "The tale of two research communities: The diffusion of research on productive efficiency," International Journal of Production Economics, Elsevier, vol. 98(1), pages 17-40, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0264070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.