IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0264040.html
   My bibliography  Save this article

Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium

Author

Listed:
  • Mahmoud Reza Ramezanpour
  • Mostafa Farajpour

Abstract

The excess of the chemical fertilizers not only causes the environmental pollution but also has many deteriorating effects including global warming and alteration of soil microbial diversity. In conventional researches, chemical fertilizers and their concentrations are selected based on the knowledge of experts involved in the projects, which this kind of models are usually subjective. Therefore, the present study aimed to introduce the optimal concentrations of three macro elements including nitrogen (0, 100, and 200 g), potassium (0, 100, 200, and 300 g), and magnesium (0, 50, and 100 g) on fruit yield (FY), fruit length (FL), and number of rows per spike (NRPS) of greenhouse banana using analysis of variance (ANOVA) followed by post hoc LSD test and two well-known artificial neural networks (ANNs) including multilayer perceptron (MLP) and generalized regression neural network (GRNN). According to the results of ANOVA, the highest mean value of the FY was obtained with 200 g of N, 300 g of K, and 50 g of Mg. Based on the results of the present study, the both ANNs models had high predictive accuracy (R2 = 0.66–0.99) in the both training and testing data for the FY, FL, and NRPS. However, the GRNN model had better performance than MLP model for modeling and predicting the three characters of greenhouse banana. Therefore, genetic algorithm (GA) was subjected to the GRNN model in order to find the optimal amounts of N, K, and Mg for achieving the high amounts of the FY, FL, and NRPS. The GRNN-GA hybrid model confirmed that high yield of the plant could be achieved by reducing chemical fertilizers including nitrogen, potassium, and magnesium by 65, 44, and 62%, respectively, in compared to traditional method.

Suggested Citation

  • Mahmoud Reza Ramezanpour & Mostafa Farajpour, 2022. "Application of artificial neural networks and genetic algorithm to predict and optimize greenhouse banana fruit yield through nitrogen, potassium and magnesium," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-12, February.
  • Handle: RePEc:plo:pone00:0264040
    DOI: 10.1371/journal.pone.0264040
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0264040
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0264040&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0264040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lauro Correa dos Santos Junior & Jonathan Muñoz Tabora & Josivan Reis & Vinicius Andrade & Carminda Carvalho & Allan Manito & Maria Tostes & Edson Matos & Ubiratan Bezerra, 2024. "Demand-Side Management Optimization Using Genetic Algorithms: A Case Study," Energies, MDPI, vol. 17(6), pages 1-14, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0264040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.