IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0263689.html
   My bibliography  Save this article

MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management

Author

Listed:
  • Zhenhan Huang
  • Fumihide Tanaka

Abstract

Financial portfolio management (PM) is one of the most applicable problems in reinforcement learning (RL) owing to its sequential decision-making nature. However, existing RL-based approaches rarely focus on scalability or reusability to adapt to the ever-changing markets. These approaches are rigid and unscalable to accommodate the varying number of assets of portfolios and increasing need for heterogeneous data input. Also, RL agents in the existing systems are ad-hoc trained and hardly reusable for different portfolios. To confront the above problems, a modular design is desired for the systems to be compatible with reusable asset-dedicated agents. In this paper, we propose a multi-agent RL-based system for PM (MSPM). MSPM involves two types of asynchronously-updated modules: Evolving Agent Module (EAM) and Strategic Agent Module (SAM). An EAM is an information-generating module with a Deep Q-network (DQN) agent, and it receives heterogeneous data and generates signal-comprised information for a particular asset. An SAM is a decision-making module with a Proximal Policy Optimization (PPO) agent for portfolio optimization, and it connects to multiple EAMs to reallocate the corresponding assets in a financial portfolio. Once been trained, EAMs can be connected to any SAM at will, like assembling LEGO blocks. With its modularized architecture, the multi-step condensation of volatile market information, and the reusable design of EAM, MSPM simultaneously addresses the two challenges in RL-based PM: scalability and reusability. Experiments on 8-year U.S. stock market data prove the effectiveness of MSPM in profit accumulation by its outperformance over five different baselines in terms of accumulated rate of return (ARR), daily rate of return (DRR), and Sortino ratio (SR). MSPM improves ARR by at least 186.5% compared to constant rebalanced portfolio (CRP), a widely-used PM strategy. To validate the indispensability of EAM, we back-test and compare MSPMs on four different portfolios. EAM-enabled MSPMs improve ARR by at least 1341.8% compared to EAM-disabled MSPMs.

Suggested Citation

  • Zhenhan Huang & Fumihide Tanaka, 2022. "MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-24, February.
  • Handle: RePEc:plo:pone00:0263689
    DOI: 10.1371/journal.pone.0263689
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263689
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0263689&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0263689?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Niu & Siyuan Li & Jian Li, 2022. "MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization," Papers 2210.01774, arXiv.org.
    2. Zhenhan Huang & Fumihide Tanaka, 2023. "A Scalable Reinforcement Learning-based System Using On-Chain Data for Cryptocurrency Portfolio Management," Papers 2307.01599, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0263689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.